(Ⅰ)已知函数,若存在,使得,则称是函数的一个不动点,设二次函数.
(Ⅰ) 当时,求函数的不动点;
(Ⅱ) 若对于任意实数,函数恒有两个不同的不动点,求实数的取值范围;
(Ⅲ) 在(Ⅱ)的条件下,若函数的图象上两点的横坐标是函数的不动点,且直线是线段的垂直平分线,求实数的取值范围.
(Ⅰ)函数的不动点为 。
(Ⅱ)
(Ⅲ)实数的取值范围.
【解析】
试题分析:
思路分析:(Ⅰ) 解方程确定函数的不动点为 。
(Ⅱ)由题意,得到方程恒有两个不相等的实数根,
根据判别式,解得 。
(Ⅲ)设函数的两个不同的不动点为得到,,
且是的两个不等实根, 得到
直至中点坐标为。根据
,且在直线上得到a,b的关系。
解:(Ⅰ) 当时,,
解,得。
所以函数的不动点为 。
(Ⅱ)因为 对于任意实数,函数恒有两个不同的不动点,
所以,对于任意实数,方程恒有两个不相等的实数根,
即方程恒有两个不相等的实数根,
所以 ,
即 对于任意实数,,
所以 ,解得
(Ⅲ)设函数的两个不同的不动点为,则,
且是的两个不等实根, 所以
直线的斜率为1,线段中点坐标为
因为 直线是线段的垂直平分线,
所以 ,且在直线上
则
所以 当且仅当时等号成立
又 所以 实数的取值范围.
考点:新定义问题,均值定理的应用,一元二次方程根的研究。
点评:难题,本题给出“不动点”的概念,解题过程中,应注意理解并应用这一概念。将问题转化成一元二次方程问题,结合直线方程,应用均值定理,达到解题目的。
科目:高中数学 来源: 题型:
1 |
3 |
1 |
2 |
1 |
2 |
3 |
2 |
4 |
3 |
3 |
2 |
|
查看答案和解析>>
科目:高中数学 来源: 题型:
|
其中.
(I)设函数.若在区间上不单调,求的取值范围;
(II)设函数 是否存在,对任意给定的非零实数,存在惟一
的非零实数(),使得成立?若存在,求的值;若不存
在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年黑龙江省高一期中考试数学卷 题型:解答题
已知函数是定义在上的奇函数,并且在上是减函数.是否存
在实数使恒成立?若存在,求出实数的取值范围;若不存在,请
说明理由.
查看答案和解析>>
科目:高中数学 来源:2010-2011年辽宁省高二下学期期中考试理科数学 题型:解答题
(本小题满分12分)
已知函数,为实数)有极值,且在处的切线与直线平行.
(I)求实数a的取值范围;
(II)是否存在实数a,使得函数的极小值为1,若存在,求出实数a的值;若不存
在,请说明理由;
(Ⅲ)设
求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com