精英家教网 > 高中数学 > 题目详情
18.设数列{an}是前n项和Sn=$\frac{1}{2}$an-1(n∈N*).
(Ⅰ)求a1•a2
(Ⅱ)求证:数列{an}为等比数列.

分析 (Ⅰ)根据数列的递推关系即可求a1•a2
(Ⅱ)根据等比数列的定义即可证明数列{an}为等比数列.

解答 解:(Ⅰ)∵Sn=$\frac{1}{2}$an-1,
∴当n=1时,a1=$\frac{1}{2}$a1-1,得a1=-2,
当n=2时,S2=$\frac{1}{2}$a2-1,
即a1+a2=$\frac{1}{2}$a2-1,
即$\frac{1}{2}$a2=-1-a1=-1-(-2)=1,
则a2=2,
则a1•a2=-2×2=-4.
(Ⅱ)证明:当n≥2时,an=Sn-Sn-1=$\frac{1}{2}$an-1-($\frac{1}{2}$an-1-1)=$\frac{1}{2}$an-$\frac{1}{2}$an-1
即$\frac{1}{2}$an=-$\frac{1}{2}$an-1
则an=-an-1
即$\frac{{a}_{n}}{{a}_{n-1}}$=-1,
即数列{an}为公比q=-1的等比数列.

点评 本题主要考查等比数列的证明,利用数列的递推关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设函数f(x)是定义在R上的偶函数,对任意x∈R,都有f(x+2)=f(x-2),且当x∈[-2,0]时,f(x)=($\frac{1}{2}$)x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)至少有2个不同的实数根,至多有3个不同的实数根,则a的取值范围是(  )
A.(1,2)B.(2,+∞)C.$({1,\root{3}{4}})$D.$[{\root{3}{4},2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和为Sn,当n≥2时,点($\frac{1}{{S}_{n-1}}$,$\frac{1}{{S}_{n}}$)在f(x)=x+2的图象上,且S1=$\frac{1}{2}$,且bn=2(1-n)an(n∈N*).
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设f(n)=$\frac{{b}_{n+2}}{(n+5){b}_{n+1}}$,求f(n)的最大值及相应的n值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义在R上的函数f(x)满足f(-x)=f(x),对于任意x1,x2∈[0,+∞),$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0(x2≠x1),则(  )
A.f(-1)<f(-2)<f(3)B.f(3)<f(-1)<f(-2)C.f(-2)<f(-1)<f(3)D.f(3)<f(-2)<f(-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若过曲线f(x)=xlnx上的点P的切线斜率为2,则点P的坐标为(e,e).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若圆x2+y2-4mx+(2m-3)y+4=0被直线2x-2y-3=0所截得的弦最长,则实数m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数g(x)=1-x,f[g(x)]=$\frac{4+x}{2-{x}^{2}}$,则f(2)=(  )
A.5B.-5C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知a1,a2,a3,a4成等比数列,其公比为2,则$\frac{{a}_{3}+2{a}_{4}}{{a}_{1}+2{a}_{2}}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.过双曲线x2-$\frac{{y}^{2}}{3}$=1的左焦点F1作倾斜角为$\frac{π}{6}$的直线l交双曲线于A、B两点,求线段AB的中点M的坐标.

查看答案和解析>>

同步练习册答案