精英家教网 > 高中数学 > 题目详情

用反证法证明:关于x的方程x2+4ax-4a+3=0、x2+(a-1)x+a2=0、x2+2ax-2a=0,当或a≥-1时,至少有一个方程有实数根.

答案:
解析:

  设三个方程都没有实根,则有判别式都小于零得:

  

  与矛盾,故原命题成立.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用反证法证明:关于x的方程x2+4ax-4a+3=0、x2+(a-1)x+a2=0、x2+2ax-2a=0,当a≤-
32
或a≥-1时,至少有一个方程有实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:

对函数f(x)=ax2+bx+c(a≠0),若存在x1,x2∈R且x1<x2,使得
1
f(x)
=
1
a
(
A
x-x1
+
B
x-x2
)
(其中A,B为常数),则称f(x))=ax2+bx+c(a≠0)为“可分解函数”.
(1)试判断f(x)=x2+3x+2是否为“可分解函数”,若是,求出A,B的值;若不是,说明理由;
(2)用反证法证明:f(x)=x2+x+1不是“可分解函数”;
(3)若f(x)=ax2+ax+4(a≠0),是“可分解函数”,则求a的取值范围,并写出A,B关于a的相应的表达式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

用反证法证明:关于x的方程x2+4ax-4a+3=0、x2+(a-1)x+a2=0、x2+2ax-2a=0,当a≤-
3
2
或a≥-1时,至少有一个方程有实数根.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市学军中学高二(下)期中数学试卷(文科)(解析版) 题型:解答题

用反证法证明:关于x的方程x2+4ax-4a+3=0、x2+(a-1)x+a2=0、x2+2ax-2a=0,当或a≥-1时,至少有一个方程有实数根.

查看答案和解析>>

同步练习册答案