精英家教网 > 高中数学 > 题目详情
11.如果$0<{log_{\frac{1}{2}}}x$$<{log_{\frac{1}{2}}}y$,那么(  )
A.0<y<x<1B.0<x<y<1C.y>x>1D.x>y>1

分析 原不等式可化为$lo{g}_{\frac{1}{2}}1$<$lo{g}_{\frac{1}{2}}x$$<{log_{\frac{1}{2}}}y$,由对数函数的单调性可得.

解答 解:∵$0<{log_{\frac{1}{2}}}x$$<{log_{\frac{1}{2}}}y$,∴$lo{g}_{\frac{1}{2}}1$<$lo{g}_{\frac{1}{2}}x$$<{log_{\frac{1}{2}}}y$,
∵对数函数y=$lo{g}_{\frac{1}{2}}x$在(0,+∞)单调递减,
∴0<y<x<1,
故选:A.

点评 本题考查对数不等式的解法,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4将△CBD沿BD折起到△EBD的位置,使平面EDB⊥平面ABD
(Ⅰ)求证:AB⊥DE
(Ⅱ)求二面角B-AE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=a-\frac{2}{{{2^x}+1}}$为R上的奇函数,则a的值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.椭圆4x2+y2=1的长轴等于(  )
A.1B.2C.4D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)在[a,b]上的图象是一条连续不间断的曲线,且在(a,b)内可导,则下列结论中正确的是③.
①f(x)的极值点一定是最值点         ②f(x)的最值点一定是极值点
③f(x)在此区间上可能没有极值点    ④f(x)在此区间上可能没有最值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=\frac{{{e^x}-a}}{{{e^x}+1}}$是奇函数.
(1)求实数a的值.
(2)判断f(x)在R上的单调性,并用定义证明.
(3)是否存在实数t,使不等式f(x-t)+f(x2-t2)≥0对一切x∈[1,2]恒成立?若存在,求出t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设x,y为正实数,且x+y=1,则$\frac{4}{x}$+$\frac{1}{y}$的最小值为(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在平面内,过定点P的直线mx+y-1=0与过定点Q的直线x-my+3=0相交与点M,则|MP||MQ|的最大值是(  )
A.$\frac{{\sqrt{10}}}{2}$B.$\sqrt{10}$C.10D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知△ABC中,bcosB=ccosC,则△ABC的形状为(  )
A.直角三角形B.等腰三角形
C.等腰或直角三角形D.等边三角形

查看答案和解析>>

同步练习册答案