精英家教网 > 高中数学 > 题目详情

在△ABC中,角A,B,C所对的边分别为a,b,c,数学公式=6,向量数学公式=(cosA,sinA)与向量数学公式=(4,-3)相互垂直.若b+c=7,则a的值为________.


分析:由可求得cosA=,再由=6可得bc=10,与b+c=7联立,利用余弦定理即可求得a的值.
解答:∵△ABC中,=6,
∴cbcosA=6;①
=(cosA,sinA),=(4,-3),
∴4cosA-3sinA=0,
∴tanA=,又A为△ABC中的内角,
∴cosA=,代入①有bc=10,又b+c=7,
∴由余弦定理得:a2=(b+c)2-2bc-2bccosA
=49-2×10-2×10×
=17.
∴a=
故答案为:
点评:本题考查解三角形,考查向量的数量积与坐标运算,考查余弦定理的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案