精英家教网 > 高中数学 > 题目详情
13.已知$θ∈[{\frac{π}{2},π}]$,则$\sqrt{1+2sin({π+θ})sin({\frac{π}{2}-θ})}$=(  )
A.sinθ-cosθB.cosθ-sinθC.±(sinθ-cosθ)D.sinθ+cosθ

分析 直接由三角函数的诱导公式化简结合已知条件计算即可得答案.

解答 解:由$θ∈[{\frac{π}{2},π}]$,$\sqrt{1+2sin({π+θ})sin({\frac{π}{2}-θ})}$=$\sqrt{1+2(-sinθ)cosθ}$=$\sqrt{(sinθ-cosθ)^{2}}$=|sinθ-cosθ|=sinθ-cosθ,
故选:A.

点评 本题考查了三角函数的化简求值,考查了三角函数的诱导公式的运用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知集合A={-1,0,1},B={y|y=|x|},则A∩B=(  )
A.{0}B.{1}C.{0,1}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知各项都不相等的数列{an}满足n≥2,$a_n^2+a_{n-1}^2-2{a_n}{a_{n-1}}-{a_n}+{a_{n-1}}=0$,a1=3.
(1)求数列的通项公式an
(2)若${b_n}=\frac{1}{{n{a_n}}}$,求数列{bn}的前n项和Sn
(3)证明:${S_n}≥\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知φ∈(0,π),且$tan(φ+\frac{π}{4})=-\frac{1}{3}$.
(Ⅰ)求tan2φ的值;
(Ⅱ)求$\frac{sinφ+cosφ}{2cosφ-sinφ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是[10,20].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=2tan(ωx+ϕ)$({ω>0,|ϕ|<\frac{π}{2}})$的最小正周期为$\frac{π}{2}$,且$f({\frac{π}{2}})=-2$,则ω=2,ϕ=-$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知二次函数f(x)=x2-2x+3
(Ⅰ)若函数$y=f({log_3}x+m),x∈[\frac{1}{3},3]$的最小值为3,求实数m的值;
(Ⅱ)若对任意互不相同的x1,x2∈(2,4),都有|f(x1)-f(x2)|<k|x1-x2|成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆心C的坐标为(2,-2),圆C与x轴和y轴都相切
(1)求圆C的方程
(2)求与圆C相切,且在x轴和y轴上的截距相等的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.圆的半径为6cm,则圆心角为30°的扇形面积为3π.

查看答案和解析>>

同步练习册答案