精英家教网 > 高中数学 > 题目详情
如图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M,将线段AB围成一个圆,使两端点A、B恰好重合,再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),连接AM并延长交x轴交于点N(n,0),则区间(0,1)中实数m的像就是n,记作f(m)=n.
(1)f(
1
3
)=
 

(2)0<m<1时,f(m)的解析式是f(m)=
 

考点:映射
专题:综合题,函数的性质及应用
分析:设AB围成圆P,圆P与y轴另一个交点为C,连接CM.利用Rt△CMA∽Rt△∠NOA,得
CM
NO
=
AM
AO
…①.圆P中利用弧度制定义和直角三角形三角函数的定义,算出AM、CM关于m的表达式,结合ON=f(m),OA=1,代入①化简,即得f(m)与m的函数关系式,即可得出结论.
解答: 解:设AB围成的圆为圆P,圆P与y轴另一个交点为C,连接CM
∵AC是圆N的直径
∴∠CMA=∠NOA=90°
∵∠CAM=∠NAO,
∴△CMA∽△∠NOA,得
CM
NO
=
AM
AO
…①
∵Rt△ACM中,直径AC=
1
π
,2∠ACM=2πm
∴AM=ACsin∠ACM=
1
π
sinπm,CM=
1
π
cosπm,
而ON=f(m),OA=1,代入①得f(m)与m的函数关系式为f(m)=
cosmπ
sinmπ
,m∈(0,1);
∴f(
1
3
)=
3
3

故答案为:
3
3
;f(m)=
cosmπ
sinmπ
,m∈(0,1).
点评:本题给出长度为1的线段围成圆后放入坐标系中,求圆的弦所在直线与x轴交点坐标的表达式,着重考查了弧度制定义、三角函数的定义和三角形相似等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,A、B、C、D是河两岸的四根电线杆,A、B在河这边,C、D在河对岸,现在距离A处150m的B处测得∠ABD=30°,∠DBC=60°,而在A处测得∠BAC=45°,∠CAD=60°,求C、D两点间的距离.(已知A、B、C、D在同一平面内).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知AB是圆O的直径,P是上半圆上的任意一点,PC是∠APB的平分线,E是下半圆的中点.
求证:直线PC经过点E.

查看答案和解析>>

科目:高中数学 来源: 题型:

在“由于任何数的平方都是非负数,所以(2i)2≥0”这一推理中,产生错误的原因是(  )
A、推理的形式不符合三段论的要求
B、大前提错误
C、小前提错误
D、推理的结果错误

查看答案和解析>>

科目:高中数学 来源: 题型:

广州某商场根据以往某种商品的销售记录,绘制了日销售量的频率分布表(如表)和频率分布直方图(如图). 
分组频数频率
[0,50]n10.15
(50,100]n20.25
(100,150]n30.30
(150,200]n40.20
(200,250]n50.10
将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求a1,a3的值.
(2)求在未来连续3天里,有连续2天的日销售量都高于100个且另1天的日销售量不高于50个的概率;
(3)用X表示在未来3天里日销售量高于100个的天数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(a+1,b+1),Q(1,0)不重合,线段PQ与直线2x-3y+1=0有交点,给出下列命题:
①2a-3b≤0;
②当a≠0时,
b
a
既有最小值又有最大值;
③?M>0,-
1
9
-b-a2≤M恒成立;
④当a≥0时,4a<9b
⑤若b<0,则|
PQ
|取最小值时a=-
6
13

其中正确的命题是
 
(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
1
x
,则
e
1
f(x)dx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点为坐标原点,其焦点为F(0,c),(0<c<2),点E(2
3
,y0),A,B都是抛物线上的点,且|EF|=4,
AF
=4
FB
,过A,B两点分别作抛物线的切线,设其焦点为M.
(1)求抛物线C的解析式;
(2)求△ABM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x+4(1-x) 
1
2
的最大值是
 

查看答案和解析>>

同步练习册答案