精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,下列函数图象关于原点对称的是(  )
分析:根据奇(偶)函数的定义以及奇偶性与图象的关系,再结合基本函数:指数(对数)函数的图象及性质进行判断.
解答:解:A、因f(-x)=-x3=-f(x),且x∉R,所以是奇函数,故函数图象关于原点对称;
B、由y=3x的图象知不关于原点对称;
C、由y=
log
x
3
的图象知不关于原点对称;
D、由f(-x)=cos(-x)=cosx,且x∉R,知余弦函数是偶函数,故函数图象不关于原点对称;
故选答案:A.
点评:本题考查了函数奇偶性的定义应用,以及函数奇偶性与函数图象的关系,并且考查了学生对基本初等函数图象及性质的掌握程度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案