精英家教网 > 高中数学 > 题目详情
17.如图,设A,B,C是不共线的三点,$\overrightarrow{AB}=\overrightarrow p,\overrightarrow{AC}=\overrightarrow q$,若点D在线段BC上,且BC:CD=5:2,则向量$\overrightarrow{AD}$=$\frac{7}{5}\overrightarrow{q}-\frac{2}{5}\overrightarrow{p}$(用向量$\overrightarrow p,\overrightarrow q$表示).

分析 由BC:CD=5:2,可得$BD=\frac{7}{5}BC$.再利用向量三角形法则与向量共线定理即可得出.

解答 解:∵BC:CD=5:2,
∴$BD=\frac{7}{5}BC$.
$\overrightarrow{AD}=\overrightarrow{BD}-\overrightarrow{BA}$=$\frac{7}{5}\overrightarrow{BC}+\overrightarrow{AB}$=$\frac{7}{5}(\overrightarrow{AC}-\overrightarrow{AB})+\overrightarrow{AB}$=$\frac{7}{5}\overrightarrow{AC}-\frac{2}{5}\overrightarrow{AB}$=$\frac{7}{5}\overrightarrow{q}-\frac{2}{5}\overrightarrow{p}$.
故答案为:$\frac{7}{5}\overrightarrow{q}-\frac{2}{5}\overrightarrow{p}$.

点评 本题考查了向量三角形法则与向量共线定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知四个函数y=3x,y=x2,y=3x,y=log3x,其中奇函数是(  )
A.y=3xB.y=x2C.y=3xD.y=log3x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.讨论函数f(x)=loga(3x2-2x-1)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数f(x)=|ex-e2a|,若f(x)在区间(-1,3-a)内的图象上存在两点,在这两点处的切线相互垂直,则实数a的取值范围是(-$\frac{1}{2}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.${∫}_{0}^{\frac{π}{2}}$cos2xdx等于$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$的左、右焦点分别为F1、F2,过点F1作倾斜角为$\frac{π}{3}$的直线交椭圆于A、B两点,求:
(1)弦AB的长
(2)△F2AB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费300元,未租出的车每辆每月需要维护费100元,又该租赁公司每个月的固定管理费为4200元.
(1)当每辆车的月租金为3 600元时,能租出多少辆?
(2)当每辆车的月租金为多少元时,租赁公司的月收益最大?最大月收益是多少?(注:公司每月收益=汽车每月租金-车辆月维护费-公司每月固定管理费)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在吸烟与患肺病这两个分类变量的计算中,“若Χ2的观测值为6.635,我们有99%的把握认为吸烟与患肺病有关系”这句话的意思:
①是指“在100个吸烟的人中,必有99个人患肺病
②是指“有1%的可能性认为推理出现错误”;
③是指“某人吸烟,那么他有99%的可能性患有肺病”;
④是指“某人吸烟,如果他患有肺病,那么99%是因为吸烟”.
其中正确的解释是②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x+\frac{π}{2})$为偶函数,当$x∈(-\frac{π}{2},\frac{π}{2})$时,f(x)=x3+sinx,若a=f(1),b=f(2),c=f(3),则有(  )
A.a<b<cB.b<c<aC.c<b<aD.c<a<b

查看答案和解析>>

同步练习册答案