精英家教网 > 高中数学 > 题目详情

从数列{an}中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列{an}的一个子数列.

设数列{an}是一个首项为a1、公差为d(d≠0)的无穷等差数列.

(1)若a1,a2,a5成等比数列,求其公比q.

(2)若a1=7d,从数列{an}中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为{an}的无穷等比子数列,请说明理由.

(3)若a1=1,从数列{an}中取出第1项、第m(m≥2)项(设am=t)作为一个等比数列的第1项、第2项,试问当且仅当t为何值时,该数列为{an}的无穷等比子数列,请说明理由.

答案:
解析:

  解:(1)由题设,得,即,得,又,于是,故其公比.(4分)

  (2)设等比数列为,其公比,(6分)

  由题设

  假设数列的无穷等比子数列,则对任意自然数,都存在,使,即,得,(8分)

  当时,,与假设矛盾,故该数列不为的无穷等比子数列.(10分)

  (3)①设的无穷等比子数列为,其公比(),得,由题设,在等差数列中,,因为数列的无穷等比子数列,所以对任意自然数,都存在,使,即,得,由于上式对任意大于等于的正整数都成立,且均为正整数,可知必为正整数,又,故是大于1的正整数.(14分)

②再证明:若是大于1的正整数,则数列存在无穷等比子数列.

即证明无穷等比数列中的每一项均为数列中的项.

在等比数列中,,在等差数列中,,若为数列中的第项,则由,得,整理得,由均为正整数,得k也为正整数,故无穷等比数列中的每一项均为数列中的项,得证.

  综上,当且仅当t是大于1的正整数时,数列存在无穷等比子数列.(18分)


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从数列{an}中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列{an}的一个子数列.设数列{an}是一个首项为a1、公差为d(d≠0)的无穷等差数列.
(1)若a1,a2,a5成等比数列,求其公比q.
(2)若a1=7d,从数列{an}中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为{an}的无穷等比子数列,请说明理由.
(3)若a1=1,从数列{an}中取出第1项、第m(m≥2)项(设am=t)作为一个等比数列的第1项、第2项,试问当且仅当t为何值时,该数列为{an}的无穷等比子数列,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

从数列{an}中取出部分项,并将它们按原来的顺序组成一个数列,称为数列{an}的一个子数列,设数列{an}是一个首项为a1,公差为d(d≠0)的无穷等差数列.
(1)若a1,a2,a5为公比为q的等比数列,求公比q的值;
(2)若a1=1,d=2,请写出一个数列{an}的无穷等比子数列{bn};
(3)若a1=7d,{cn}是数列{an}的一个无穷子数列,当c1=a2,c2=a6时,试判断{cn}能否是{an}的无穷等比子数列,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省宿迁中学高考数学模拟试卷(解析版) 题型:解答题

从数列{an}中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列{an}的一个子数列.设数列{an}是一个首项为a1、公差为d(d≠0)的无穷等差数列.
(1)若a1,a2,a5成等比数列,求其公比q.
(2)若a1=7d,从数列{an}中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为{an}的无穷等比子数列,请说明理由.
(3)若a1=1,从数列{an}中取出第1项、第m(m≥2)项(设am=t)作为一个等比数列的第1项、第2项,试问当且仅当t为何值时,该数列为{an}的无穷等比子数列,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省高考数学预测试卷及最后一讲(解析版) 题型:解答题

从数列{an}中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列{an}的一个子数列.设数列{an}是一个首项为a1、公差为d(d≠0)的无穷等差数列.
(1)若a1,a2,a5成等比数列,求其公比q.
(2)若a1=7d,从数列{an}中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为{an}的无穷等比子数列,请说明理由.
(3)若a1=1,从数列{an}中取出第1项、第m(m≥2)项(设am=t)作为一个等比数列的第1项、第2项,试问当且仅当t为何值时,该数列为{an}的无穷等比子数列,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省无锡市锡山区羊尖高级中学高考数学模拟试卷(数学)(解析版) 题型:解答题

从数列{an}中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列{an}的一个子数列.设数列{an}是一个首项为a1、公差为d(d≠0)的无穷等差数列.
(1)若a1,a2,a5成等比数列,求其公比q.
(2)若a1=7d,从数列{an}中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为{an}的无穷等比子数列,请说明理由.
(3)若a1=1,从数列{an}中取出第1项、第m(m≥2)项(设am=t)作为一个等比数列的第1项、第2项,试问当且仅当t为何值时,该数列为{an}的无穷等比子数列,请说明理由.

查看答案和解析>>

同步练习册答案