【题目】如图:已知正方形的边长为
,沿着对角线
将
折起,使
到达
的位置,且
.
(1)证明:平面平面
;
(2)若是
的中点,点
在线段
上,且满足直线
与平面
所成角的正弦值为
,求
的值.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,椭圆
:
,点
在椭圆
上,过点
作圆
的切线,其切线长为椭圆
的短轴长.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线与椭圆
的另一个交点为
,点
在椭圆
上,且
,直线
与
轴交于
点.设直线
,
的斜率分别为
,
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有10个不同的产品,其中4个次品,6个正品.现每次取其中一个进行测试,直到4个次品全测完为止,若最后一个次品恰好在第五次测试时被发现,则该情况出现的概率是_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(Ⅰ)求k的值及f(x)的表达式。
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年11月18日国际射联步手枪世界杯总决赛在莆田市综合体育馆开幕,这是国际射联步手枪世界杯总决赛时隔10年再度走进中国.为了增强趣味性,并实时播报现场赛况,我校现场小记者李明和播报小记者王华设计了一套播报转码法,发送方由明文→密文(加密),接受方由密文→明文(解密),已知加密的方法是:密码把英文的明文(真实文)按字母分解,其中英文的的26个字母(不论大小写)依次对应1,2,3,…,26这26个自然数通过变换公式:
,将明文转换成密文,如
,即
变换成
,即
变换成
.若按上述规定,若王华收到的密文是
,那么原来的明文是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:
的离心率为
,点A为该椭圆的左顶点,过右焦点
的直线l与椭圆交于B,C两点,当
轴时,三角形ABC的面积为18.
求椭圆
的方程;
如图,当动直线BC斜率存在且不为0时,直线
分别交直线AB,AC于点M、N,问x轴上是否存在点P,使得
,若存在求出点P的坐标;若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年1月26日,甘肃省人民政府办公厅发布《甘肃省关于餐饮业质量安全提升工程的实施意见》,卫生部对16所大学食堂的“进货渠道合格性”和“食品安全”进行量化评估.满10分者为“安全食堂”,评分7分以下的为“待改革食堂”.评分在4分以下考虑为“取缔食堂”,所有大学食堂的评分在7~10分之间,以下表格记录了它们的评分情况:
(1)现从16所大学食堂中随机抽取3个,求至多有1个评分不低于9分的概率;
(2)以这16所大学食堂评分数据估计大学食堂的经营性质,若从全国的大学食堂任选3个,记表示抽到评分不低于9分的食堂个数,求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线C的参数方程为(
为参数),以平面直角坐标系的原点O为极点,x轴正半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)过点,倾斜角为
的直线l与曲线C相交于M,N两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若动点到定点
与定直线
的距离之和为
.
(1)求点的轨迹方程,并在答题卡所示位置画出方程的曲线草图;
(2)(理)记(1)得到的轨迹为曲线,问曲线
上关于点
对称的不同点有几对?请说明理由.
(3)(文)记(1)得到的轨迹为曲线,若曲线
上恰有三对不同的点关于点
对称,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com