【题目】已知函数 .
(1)当时,
①求曲线在点处的切线方程;
②求函数在区间上的值域.
(2)对于任意,都有,求实数的取值范围.
【答案】(1)①②;(2).
【解析】试题分析:
(1)由题意可得函数的解析式,
①利用导数研究切线方程可得曲线在点处的切线方程为.
②利用导函数研究函数的单调性可得在区间上的值域为.
(2)原问题等价于.构造函数,分类讨论可得实数的取值范围是.
试题解析:
(1)当时, ,
①,由, ,
则曲线在点处的切线方程为,整理为: .
②令,有,
当时, ,
当时,得,解得: ,
故当时, ,可得,函数在区间上单调递减,
, ,
故函数在区间上的值域为.
(2)由,有,故可化为.
整理得: .
即函数在区间为增函数,
,
,故当时, ,即,
①当时, ;
②当时,整理为: ,
令,有 ,
当, , ,有,
当时,函数单调递减,故,
故有: ,可得.
科目:高中数学 来源: 题型:
【题目】如图所示,四棱锥P﹣ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2. (Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了引导居民合理用电,国家决定实行合理的阶梯电价,居民用电原则上以住宅为单位(一套住宅为一户).
阶梯级别 | 第一阶梯 | 第二阶梯 | 第三阶梯 |
月用电范围(度) | (0,210] | (210,400] |
某市随机抽取10户同一个月的用电情况,得到统计表如下:
居民用电户编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
用电量(度) | 53 | 86 | 90 | 124 | 132 | 200 | 215 | 225 | 300 | 410 |
若规定第一阶梯电价每度0.5元,第二阶梯超出第一阶梯的部分每度0.6元,第三阶梯超出第二阶梯的部分每度0.8元,试计算A居民用电户用电410度时应电费多少元?
现要在这10户家庭中任意选取3户,求取到第二阶梯电量的户数的分布列与期望;
以表中抽到的10户作为样本估计全市的居民用电,现从全市中依次抽取10户,若抽到户用电量为第一阶梯的可能性最大,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了增强高考与高中学习的关联度,考生总成绩由统一高考的语文、数学、外语3个科目成绩和高中学业水平考试3个科目成绩组成.保持统一高考的语文、数学、外语科目不变,分值不变,不分文理科,外语科目提供两次考试机会.计入总成绩的高中学业水平考试科目,由考生根据报考高校要求和自身特长,在思想政治、历史、地理、物理、化学、生物、信息技术七科目中自主选择三科.
(1)某高校某专业要求选考科目物理,考生若要报考该校该专业,则有多少种选考科目的选择;
(2)甲、乙、丙三名同学都选择了物理、化学、历史组合,各学科成绩达到二级的概率都是0.8,且三人约定如果达到二级不参加第二次考试,达不到二级参加第二次考试,如果设甲、乙、丙参加第二次考试的总次数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位建造一间背面靠墙的小房,地面面积为12m2 , 房屋正面每平方米造价为1200元,房屋侧面每平方米造价为800元,屋顶的造价为5800元,如果墙高为3m,且不计房屋背面和地面的费用,设房屋正面地面的边长为xm,房屋的总造价为y元.
(1)求y用x表示的函数关系式;
(2)怎样设计房屋能使总造价最低?最低总造价是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)当时,求的单调区间;
(2)令,区间, 为自然对数的底数。
(ⅰ)若函数在区间上有两个极值,求实数的取值范围;
(ⅱ)设函数在区间上的两个极值分别为和,
求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设{an}为单调递增数列,首项a1=4,且满足an+12+an2+16=8(an+1+an)+2an+1an , n∈N* , 则a1﹣a2+a3﹣a4+…+a2n﹣1﹣a2n=( )
A.﹣2n(2n﹣1)
B.﹣3n(n+3)
C.﹣4n(2n+1)
D.﹣6n(n+1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com