精英家教网 > 高中数学 > 题目详情
13.函数y=${3^{\sqrt{x}}}$的值域为(  )
A.(0,+∞)B.[1,+∞)C.[3,+∞)D.[9,+∞)

分析 由题意知$\sqrt{x}$≥0,从而可得y=${3^{\sqrt{x}}}$≥1.

解答 解:∵$\sqrt{x}$≥0,
∴y=${3^{\sqrt{x}}}$≥1,
故函数y=${3^{\sqrt{x}}}$的值域为[1,+∞),
故选:B.

点评 本题考查了函数的值域的求法,注意$\sqrt{x}$≥0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知$U=\{x|\frac{x-2}{x}≤1\}$,A={x|2-x≤1},则∁UA=(  )
A.{x|x<1}B.{x|0<x<1}C.{x|0≤x<1}D.{x|x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.集合$\left\{{x∈N|\frac{6}{x}∈N}\right\}$的真子集有(  )个.
A.8B.16C.15D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知:在△ABC中,$sinA+cosA=\frac{1}{5}$.
求:(1)sinA•cosA
(2)tanA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为p=2cosθ,θ∈[0,$\frac{π}{2}$].
(1)在直角坐标系下求曲线C的方程;
(2)设点D在曲线C上,曲线C在D处的切线与直线l:y=$\sqrt{3}$x+2垂直,根据(1)中你得到的曲线C的方程,在直角坐标系下求D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.方程7x2-(k+13)x+k2-k-2=0的两根分别在区间(0,1)和(1,2)内,则k的取值范围(  )
A.(-$\frac{2}{3}\sqrt{21}$,$\frac{2}{3}\sqrt{21}$)B.(-2,-1)∪(3,4)C.(-$\frac{2}{3}\sqrt{21}$,-1)D.($\frac{2}{3}\sqrt{21}$,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)在R上是奇函数,当x>0时,f(x)=x2+4x,则x<0时f(x)的解析式f(x)=-x2+4x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知空间直角坐标系中两点A(1,-2,3),B(-1,3,1),则|AB|=$\sqrt{33}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知(1-x)n的展开式中,前三项的二项式系数之和是22,求展开式中的中间项.

查看答案和解析>>

同步练习册答案