精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,内角ABC的对边分别为abc,已知asinBbsinA).

1)求A

2D是线段BC上的点,若ADBD2CD3,求△ADC的面积.

【答案】1A;(2.

【解析】

1)首先利用正弦定理可得asinBbsinA,然后利用两角差的正弦公式展开化简即可求解.

2)设∠Bθ,由题意可得∠BADθ,∠ADC2θ,∠DACθ,在△ADC中,利用正弦定理可得sinθcosθ,根据同角三角函数的基本关系求出sin2θ再利用三角形的面积公式即可求解.

1)由正弦定理可得asinBbsinA

则有bsinAbsinAcosA),化简可得sinAcosA

可得tanA

因为A∈(0,π),

所以A

2)设∠Bθ,由题意可得∠BADθ,∠ADC2θ

DACθ,∠ACDθ

在△ADC中,,则

所以,可得sinθcosθ

又因为sin2θ+cos2θ1,可得sinθcosθ

sin2θ2sinθcosθ

所以SADCsinADC

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在菱形中,,平面平面是线段的中点,.

1)证明:平面.

2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1是直角梯形.为折痕将折起,使点到达的位置,且,如图2.

1)证明:平面平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其它各面用钢筋网围成.

(1)现有可围长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?

(2)若使每间虎笼面积为,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为我国数学家赵爽3世纪初在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则区域涂色不相同的概率为  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】谢尔宾斯基三角形(英语:Sierpinskitriangle)是一种分形,由波兰数学家谢尔宾斯基在1915年提出.具体操作是:先取一个实心正三角形(图1),挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形)(图2),然后在剩下的三个小三角形中又各挖去一个“中心三角形”(图3),我们用黑色三角形代表剩下的面积,用上面的方法可以无限连续地作下去.若设操作次数为3(每挖去一次中心三角形算一次操作),在图中随机选取一个点,则此点取自黑色三角形的概率为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】探月工程“嫦娥四号”探测器于2018128日成功发射,实现了人类首次月球背面软着陆.以嫦娥四号为任务圆满成功为标志,我国探月工程四期和深空探测工程全面拉开序幕.根据部署,我国探月工程到2020年前将实现“绕、落、回”三步走目标.为了实现目标,各科研团队进行积极的备战工作.某科研团队现正准备攻克甲、乙、丙三项新技术,甲、乙、丙三项新技术独立被攻克的概率分别为,若甲、乙、丙三项新技术被攻克,分别可获得科研经费万,万,.若其中某项新技术未被攻克,则该项新技术没有对应的科研经费.

1)求该科研团队获得万科研经费的概率;

2)记该科研团队获得的科研经费为随机变量,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),.

(1)若的图象在处的切线恰好也是图象的切线.

①求实数的值;

②若方程在区间内有唯一实数解,求实数的取值范围.

(2)当时,求证:对于区间上的任意两个不相等的实数 ,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为F,过点F的直线交抛物线于AB两点.

1)若,求直线AB的斜率;

2)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.

查看答案和解析>>

同步练习册答案