精英家教网 > 高中数学 > 题目详情

如图,已知三角形△ABC与△BCD所在平面互相垂直,且∠BAC=∠BCD=90°,AB=AC,CB=CD,点P,Q分别在线段BD,CD上,沿直线PQ将△PQD向上翻折,使D与A重合.
(Ⅰ)求证:AB⊥CQ;
(Ⅱ)求直线AP与平面ACQ所成的角.

(I)证明:∵面ABC⊥面BCQ
又CQ⊥BC
∴CQ⊥面ABC
∴CQ⊥AB(5分)
(Ⅱ)解:取BC的中点O,BD的中点E,如图以OB所在直线为x轴,以OE所在直线为y轴,以OA所在直线为z轴,建立空间直角坐标系.(6分)
不妨设BC=2,则A(0,0,1),D(-1,2,0),P(x,1-x,0),(8分)
由|AP|=|DP|即x2+(1-x)2+1=(x+1)2+(x+1)2
解得x=0,所以P(0,1,0),(10分)
=(0,1,-1)
=(x,y,z)为平面ACQ的一个法向量,
因为=(-1,0,-1),==λ(0,1,0)

所以=(1,0,-1)(12分)
设直线AP与平面ACQ所成的角为α
则Sinα=|cos<AP,n>|=
所以α=
即直线AP与平面ACQ所成的角为V(14分)
分析:(I)由已知中面ABC⊥面BCQ,及=∠BCD=90°,我们根据面面垂直的性质定理,我们易得CQ⊥面ABC,进而根据线面垂直的定义,即可得到AB⊥CQ;
(Ⅱ)以BC的中点O,BD的中点E,如图以OB所在直线为x轴,以OE所在直线为y轴,以OA所在直线为z轴,建立空间直角坐标系,求出各顶点的坐标,进而求出直线AP的方向向量及平面ACQ的法向量,根据向量法求线面夹角的步骤,即可得到答案.
点评:本题考查的知识点是用空间向量求直线与平面的夹角,直线与平面垂直的性质,直线与平面所成的角,熟练掌握空间向量法求线线夹角、线面夹角及两面角的方法步骤是解答此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知三角形的顶点为A(2,4),B(0,-2),C(-2,3),求:
(Ⅰ)AB边上的中线CM所在直线的一般方程;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图:已知椭圆A,B,C是长轴长为4的椭圆上三点,点A是长轴的一个端点,BC过椭圆的中心O,且
AC
BC
=0,|
BC
|=2|
AC
|

(Ⅰ)求椭圆的标准方程;
(Ⅱ)如果椭圆上两点P,Q使得直线CP,CQ与x轴围成底边在x轴上的等腰三角形,是否总存在实数λ使
PQ
AB
?请给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知三角形△ABC与△BCD所在平面互相垂直,且∠BAC=∠BCD=90°,AB=AC,CB=CD,点P,Q分别在线段BD,CD上,沿直线PQ将△PQD向上翻折,使D与A重合.
(Ⅰ)求证:AB⊥CQ;
(Ⅱ)求直线AP与平面ACQ所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三角形的顶点为A(2,4),B(0,-2),C(-2,3),
(Ⅰ)求直线AB的方程;
(Ⅱ)求AB边上的高所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•泉州模拟)如图,已知三角形ABC的三边AB=4,AC=5,BC=3,椭圆M以A、B为焦点且经过点C.
(Ⅰ)建立适当直角坐标系,求椭圆M的标准方程;
(Ⅱ)过线段AB的中点的直线l交椭圆M于E,F两点,试求
AE
BF
的取值范围.

查看答案和解析>>

同步练习册答案