【题目】解答下列各题:
(1)在△ABC中,已知C=45°,A=60°,b=2,求此三角形最小边的长及a与B的值;
(2)在△ABC中,已知A=30°,B=120°,b=5,求C及a与c的值.
科目:高中数学 来源: 题型:
【题目】某地建一座桥,两端的桥墩已建好,这两墩相距米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为米的相邻两墩之间的桥面工程费用为万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为万元. 假设需要新建n个桥墩.
(1)写出n关于的函数关系式;
(2)试写出关于的函数关系式;
(3)当=640米时,需新建多少个桥墩才能使最小?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.若每辆车的月租金每增加50元,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定位3600元时,能租出多少辆车?
(2)当每辆车的月租金定位多少元时,租赁公司的月收益最大,最大月收益是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数在区间[-1,4]上有最大值10和最小值1.设
(1)求的值;
(2)证明:函数在上是增函数.
(3)若不等式在上有解,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如下:
现从所有实验动物中任取一只,取到“注射疫苗”动物的概率为.
(1)求2×2列联表中的数据,,,的值;
(2)绘制发病率的条形统计图,并判断疫苗是否有效?
(3)能够有多大把握认为疫苗有效?
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数满足以下两个条件:
①不等式的解集是;②函数在上的最小值是3.
(1)求的解析式;
(2)若点()在函数的图象上,且.
(i)求证:数列为等比数列;
(ii)令,是否存在正整数,使得取到最小值?若有,请求出的值;若无,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班有学生60人,现将所有学生按1,2, 3,…,60随机编号,若采用系统抽样的方法抽取一个容量为4的样本(等距抽样),已知编号为3, 33, 48号学生在样本中,则样本中另一个学生的编号为( )
A. 28 B. 23 C. 18 D. 13
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值.
(2)求不等式f(x)-f(x-2)>3的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com