【题目】已知函数的最大值为.
(Ⅰ)求常数的值;
(Ⅱ)求函数的单调递增区间;
(Ⅲ)若将的图象向左平移个单位,得到函数的图象,求函数在区间上的最大值和最小值.
科目:高中数学 来源: 题型:
【题目】抛物线x2=ay(a>0)的准线l与y轴交于点P,若l绕点P以每秒 弧度的角速度按逆时针方向旋转t秒钟后,恰与抛物线第一次相切,则t等于( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 ①求平行于直线3x+4y-12=0,且与它的距离是7的直线的方程;
②求垂直于直线x+3y-5="0," 且与点P(-1,0)的距离是的直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆过点,离心率为.
(1)求椭圆的标准方程;
(2)过椭圆的上顶点作直线交抛物线于两点, 为原点.
①求证: ;
②设、分别与椭圆相交于、两点,过原点作直线的垂线,垂足为,证明: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M: 及其上一点A(2,4)
(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;
(3)设点T(t,o)满足:存在圆M上的两点P和Q,使得,求实数t的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数的图象过点,对任意满足,且最小值是.
(1)求的解析式;
(2)设函数,其中,求在区间上的最小值;
(3)若在区间上,函数的图象恒在函数的图象上方,试确定实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列,若对于任意数列满足,则称数列为“数列”.
(Ⅰ)已知数列:,,是“数列”,求实数的取值范围.
(Ⅱ)是否存在首项为的等差数列为“数列”,且前项和满足,若存在,求出的通项公式,若不存在,请说明理由;
(Ⅲ)已知各项均为正整数的等比数列是“数列”,数列不是“数列”,若数列,试判断数列是否“数列”,并且说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]在直角坐标系xOy中,曲线C1的参数方程为 (α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+ )=2 .
(1)写出C1的普通方程和C2的直角坐标方程;
(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com