精英家教网 > 高中数学 > 题目详情
如图,正六边形的两个顶点为椭圆的两个焦点,其余四个顶点在
椭圆上,则该椭圆的离心率的值是______

分析:先连接AE,则AE⊥DE.设AD=2c,则可求得DE和AE,进而由椭圆的定义知AE|+|ED|= c+c求得a,最后根据离心率公式求得答案.
解答:解:连接AE,则AE⊥DE.设|AD|=2c,则|DE|=c,|AE|=c.
椭圆定义,得2a=|AE|+|ED|=c+c,
所以e===-1,
故答案为:-1.
点评:本题主要考查了椭圆的简单性质.特别是椭圆定义的应用.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知P是椭圆上的一个动点,且P与椭圆长轴两个顶点连线的斜率之积为,则椭圆的离心率为( )
A. B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

连接椭圆的一个焦点和一个顶点得到的直线方程为,则该椭圆的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆C1=1(0<b<2)的离心率等于,抛物线C2x2=2py(p>0)的焦点在椭圆C1的顶点上.
(Ⅰ)求抛物线C2的方程;
(Ⅱ)若过M(-1,0)的直线l与抛物线C2交于EF两点,又过EF作抛物线C2的切线l1l2,当l1l2时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知椭圆C的中心在圆点,焦点在x轴上,F1,F2分别是椭圆C的左、右焦点,M是椭圆短轴的一个端点,过F1的直线与椭圆交于A,B两点,的面积为4,的周长为(I)求椭圆C的方程;(II)设点Q的坐标为(1,0),是否存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PF1,PF2都相切,若存在,求出P点坐标及圆的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)椭圆的两个焦点分别为F1(0,-2),F2(0,2),离心率e =。(Ⅰ)求椭圆方程;(Ⅱ)一条不与坐标轴平行的直线l与椭圆交于不同的两点M、N,且线段MN中点的横坐标为-,求直线l倾斜角的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线与椭圆相交于AB两点.
(1)若椭圆的离心率为,焦距为2,求线段AB的长;
(2)若向量与向量互相垂直(其中O为坐标原点),当椭圆的离心率 时,求椭圆的长轴长的最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的焦点分别为,直线轴于点,且

(1)试求椭圆的方程;
(2)过分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆以点P(4,2)为中点的弦的方程是_________________ 

查看答案和解析>>

同步练习册答案