精英家教网 > 高中数学 > 题目详情

已知函数.

(1)若,当时,求的取值范围;

(2)若定义在上奇函数满足,且当时,,求上的反函数

(3)对于(2)中的,若关于的不等式上恒成立,求实数的取值范围.

 

【答案】

(1);(2);(3)

【解析】

试题分析:(1)这实质上是解不等式,即,但是要注意对数的真数要为正,;(2)上奇函数满足,可很快求出,要求上的反函数,必须求出上的解析式,根据的定义,在也应该是一个分段函数,故我们必须分别求出表达式,然后分别求出其反函数的表达式;(3)根据已知可知是周期为4的周期函数,不等式上恒成立,求参数的取值范围问题,一般要研究函数的的单调性,利用单调性,可直接去掉函数符号,由已知,我们可得出上是增函数,在上是减函数,又,而可无限趋近于,因此时,题中不等式恒成立,就等价于,现在我们只要求出的范围,而要求的范围,只要按的正负分类即可.

试题解析:(1)原不等式可化为    1分

所以         1分

                 2分

(2)因为是奇函数,所以,得     1分

①当时,

             1分

此时,所以      1分

②当时,   1分

此时,所以   1分

综上,上的反函数为        1分

(3)由题意,当时,,在上是增函数,

,在上也是增函数,

所以上是增函数,               2分

,则

,得

所以上是减函数,       2分

的解析式知      1分

①当时,,因为,所以,即

②当时,,满足题意;

③当时,,因为,所以,即

综上,实数的取值范围为                3分

考点:(1)对数不等式;(2)分段函数的反函数;(3)不等式恒成立问题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数

(1)若,试确定函数的单调区间;(2)若,且对于任意恒成立,试确定实数的取值范围;(3)设函数,求证:

查看答案和解析>>

科目:高中数学 来源:2014届宁夏高二上学期期末考试文科数学试卷(解析版) 题型:解答题

(本题满分12分)已知函数

(1)若,求的单调区间;

(2)当时,求证:

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省岳阳市高三第一次质量检测理科数学试卷(解析版) 题型:解答题

(本小题满分13分)已知函数

(1)若的极值点,求实数的值;

(2)若上为增函数,求实数的取值范围;

(3)当时,方程有实根,求实数的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省华中师大一附中高三上学期期中检测文科数学试卷(解析版) 题型:解答题

已知函数

(1)若,求函数的值;

(2)求函数的值域。

 

查看答案和解析>>

科目:高中数学 来源:吉林省10-11学年高二下学期期末考试数学(理) 题型:解答题

已知函数

(1)若从集合中任取一个元素,从集合中任取一个元素,求方程有两个不相等实根的概率;

(2)若是从区间中任取的一个数,是从区间中任取的一个数,求方程没有实根的概率.

 

查看答案和解析>>

同步练习册答案