精英家教网 > 高中数学 > 题目详情

【题目】已知函数为奇函数, 为常数.

(1)确定的值;

(2)求证: 上的增函数;

(3)若对于区间上的每一个值,不等式恒成立,求实数的取值范围.

【答案】(1) ;(2)证明见解析;(3) .

【解析】试题分析:

1是奇函数可得,从而,整理得,比较系数得,验证得不合题意,故。(2)设,做差比较可得,故,即,证得结论成立。(3)分离参数得上恒成立,设,根据单调性求得,从而可得结论。

试题解析:

(1)∵函数是奇函数,

整理得

解得

时, ,不合题意舍去,

(2)由(1)可得

,

,

,

,即.

上的增函数.

(3)依题意得上恒成立,

由(2)知函数上单调递增,

∴当

所以.

故实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,已知直线l:x+y+a=0与点A(0,2),若直线l上存在点M满足|MA|2+|MO|2=10(O为坐标原点),则实数a的取值范围是(
A.(﹣ ﹣1, ﹣1)
B.[﹣ ﹣1, ﹣1]
C.(﹣2 ﹣1,2 ﹣1)
D.[﹣2 ﹣1,2 ﹣1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若集合A={x|x2<2x},集合B={x|x< },则A∩(RB)等于(
A.(﹣2, ]
B.(2,+∞)
C.(﹣∞, ]
D.D[ ,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,其左顶点在圆上.

)求椭圆的方程;

)若点为椭圆上不同于点的点,直线与圆的另一个交点为.是否存在点,使得? 若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,△ABD是边长为2的正三角形,PC⊥底面ABCD,AB⊥BP,BC=

(1)求证:PA⊥BD;
(2)若PC=BC,求二面角A﹣BP﹣D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆O的直径,C为圆周上一点,过C作圆O的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E.

(1)求证:ABDE=BCCE;
(2)若AB=8,BC=4,求线段AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的是( )

A. 时,函数是增函数,因为,所以是增函数,这种推理是合情合理.

B. 在平面中,对于三条不同的直线 ,若 ,将此结论放在空间中也是如此,这种推理是演绎推理.

C. 命题 的否定是 .

D. 若分类变量的随机变量的观察值越小,则两个分类变量有关系的把握性越小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥,四边形是矩形,平面平面, 中点.

Ⅰ)求证: 平面;

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左,右焦点分别为F1 F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M.

(1)求点M的轨迹的方程;

2)设x轴交于点Q 上不同于点Q的两点RS,且满足,求的取值范围.

查看答案和解析>>

同步练习册答案