精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-c)cosB=bcosC,则B=(  )
A、
π
4
B、
π
3
C、
π
6
D、
π
2
考点:正弦定理,两角和与差的正弦函数
专题:解三角形
分析:利用正弦定理把题设等式中的边换成角的正弦,进而利用两角和公式化简整理求得cosB的值,从而求得B.
解答: 解:由题意,∵(2a-c)cosB=bcosC,由正弦定理得:(2sinA-sinC)cosB=sinBcosC..
∴2sinA•cosB-sinC•cosB=sinBcosC
化为:2sinA•cosB=sinC•cosB+sinBcosC
∴2sinA•cosB=sin(B+C)
∵在△ABC中,sin(B+C)=sinA
∴2sinA•cosB=sinA,得:cosB=
1
2

∴B=
π
3

故选:B.
点评:本题以三角形为载体,主要考查了正弦定理的运用,考查两角和公式.考查了学生综合分析问题和解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

书架上有语文书,数学书各三本,从中任取两本,取出的恰好都是数学书的概率为(  )
A、
1
3
B、
1
4
C、
1
5
D、
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(2x+1)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a0+a1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在实数集R上的函数f(x)满足f(x)+f(x+2)=0,且f(4-x)=f(x).现有以下三种叙述:
①8是函数f(x)的一个周期;②f(x)的图象关于直线x=2对称;③f(x)是偶函数
其中正确的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两人分别进行3次和n次射击,甲乙每次击中目标的概率分别为
1
2
和p,记甲乙击中目标的次数分别为X和Y,且E(Y)=2,D(Y)=
2
3

(1)求X的概率分布及数学期望E(X)
(2)求乙至多击中目标2次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,x-1>lnx.命题q:?x∈R,
x
>0,则(  )
A、命题p∨q是假命题
B、命题p∧q是真命题
C、命题p∧(¬q)是真命题
D、命题p∨(¬q)是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,an.Sn满足(t-1)Sn=t(an-2)(t为常数,t≠0且t≠1).
(1)求数列{an}的通项公式;
(2)设bn=(-an)•log3(1-Sn),当t=
1
3
时,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[-3,2]上随机选取一个数x,使得函数y=
x+1
有意义的概率为(  )
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

确定下列三角函数值的符号:(1)tan505°(2)tan(-
23π
4
)(3)cos(-
59π
17

查看答案和解析>>

同步练习册答案