精英家教网 > 高中数学 > 题目详情

【题目】设函数,则下列命题中正确的个数是( )

时,函数上是单调增函数;

时,函数上有最小值;

函数的图象关于点对称;

方程可能有三个实数根.

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

转化为分段函数,进而分别判断.

= ,

b>0,结合一元二次方程根与系数的关系,可判断y=,在(-,0 )上是增函数,y=[0,+)上是增函数,且x=0时,函数图象连续,故f(x)R上是单调增函数.故①正确

b<0时,f(x)的值域是R,没有最小值,故错误;

f(x)=|x|x+bx,f(-x)=-f(x),故函数f(x)是奇函数,即函数f(x)的图象关于(0,0)对称.而函数f(x)=|x|x+bx+c的图象是由函数f(x)=|x|x+bx的图象向上平移个单位 ,故图象一定是关于(0,c)对称的,故正确;

b=-2,c=0,则f(x)=|x|x-2x=0,解得x=0,2,-2.所以正确.

故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 为椭圆 上任一点, 为椭圆的焦点,,离心率为

(1)求椭圆的标准方程;

(2)直线 经过点 ,且与椭圆交于 两点,若直线 的斜率依次成等比数列,求直线 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方体的棱长为1,点是棱上的动点,是棱上一点,.

(1)求证:

(2)若直线平面,试确定点的位置,并证明你的结论;

(3)设点在正方体的上底面上运动,求总能使垂直的点所形成的轨迹的长度.(直接写出答案)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大西洋鲑鱼每年都要逆流而上,游回产地产卵,经研究发现鲑鱼的游速可以表示为函数y=log3,单位是m/s,θ是表示鱼的耗氧量的单位数.

(1)当一条鲑鱼的耗氧量是900个单位时,它的游速是多少?

(2)计算一条鱼静止时耗氧量的单位数。

(3)某条鲑鱼想把游速提高1 m/s,那么它的耗氧量的单位数是原来的多少倍

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,等腰的底边,高,点是线段上异于点的动点,点边上,且,现沿将△折起到△的位置,使,记 表示四棱锥的体积.

(1)的表达式;(2)为何值时, 取得最大,并求最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位建造一间地面面积为12的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度不得超过米,房屋正面的造价为400/,房屋侧面的造价为150/,屋顶和地面的造价费用合计为5800元,如果墙高为3,且不计房屋背面的费用.

1)把房屋总价表示成的函数,并写出该函数的定义域;

2)当侧面的长度为多少时,总造价最低?最低总造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数>0, ≠1, ≠﹣1),是定义在(﹣1,1)上的奇函数.

(1)求实数的值;

(2)当=1时,判断函数在(﹣1,1)上的单调性,并给出证明;

(3)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在半径为,圆心角为的扇形金属材料中剪出一个长方形,并且的平分线平行,设.

(1)试将长方形的面积表示为的函数;

2若将长方形弯曲,使重合焊接制成圆柱的侧面,当圆柱侧面积最大时,求圆柱的体积(假设圆柱有上下底面);为了节省材料,想从△中直接剪出一个圆面作为圆柱的一个底面,请问是否可行?并说明理由.

(参考公式:圆柱体积公式.其中是圆柱底面面积,是圆柱的高;等边三角形内切圆半径.其中是边长)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=lnx+ax2﹣(a+2)x在 处取得极大值,则正数a的取值范围是

查看答案和解析>>

同步练习册答案