【题目】在四棱柱中,,且,平面,.
(1)证明:.
(2)求与平面所成角的正弦值.
【答案】(1)见解析; (2).
【解析】
(1)根据三角形全等证明AC⊥BD,结合可得AC⊥平面,故而;(2)以,的交点为原点,建立如图所示的空间直角坐标系,计算平面的法向量,利用线面角的向量公式求解即可
(1)证明:∵AD=CD,∴∠DAC=∠DCA,
又∠BAD=∠BCD,∴∠BAC=∠BCA,∴AB=AC,
∴△ABD≌△CBD,∴∠ADB=∠CDB,
∴△AOD≌△COD,∴∠AOD=∠COD=90°,
∴AC⊥BD,
又因为平面,所以,又所以平面,
因为平面,所以.
(2)以,的交点为原点,过O作平行于的直线为z轴,建立如图所示的空间直角坐标系,由(1)及,知,,,,
所以,,.
设平面的法向量为,由,得,
所以,令,得.
设与平面所成的角为,则 .
科目:高中数学 来源: 题型:
【题目】已知椭圆是长轴的一个端点,弦过椭圆的中心O,点C在第一象限,且,.
(1)求椭圆的标准方程;
(2)设P、Q为椭圆上不重合的两点且异于A、B,若的平分线总是垂直于x轴,问是否存在实数,使得?若不存在,请说明理由;若存在,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥中,底面,,,,.
(1)当变化时,点到平面的距离是否为定值?若是,请求出该定值;若不是,请说明理由;
(2)当直线与平面所成的角为45°时,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列满足:对任意两个正整数,与至少有一个成立,则称这个数列为“和谐数列”.
(Ⅰ)求证:若数列为等差数列,则为“和谐数列”;
(Ⅱ)求证:若数列为“和谐数列”,则数列从第项起为等差数列;
(Ⅲ)若是各项均为整数的“和谐数列”,满足,且存在使得,,求p的所有可能值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十七世纪,法国数学家费马提出猜想;“当整数时,关于、、的方程没有正整数解”,经历三百多年,1995年英国数学家安德鲁怀尔斯给出了证明,使它终成费马大定理,则下面命题正确的是( )
①对任意正整数,关于、、的方程都没有正整数解;
②当整数时,关于、、的方程至少存在一组正整数解;
③当正整数时,关于、、的方程至少存在一组正整数解;
④若关于、、的方程至少存在一组正整数解,则正整数;
A.①②/span>B.①③C.②④D.③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件,用随机模拟的方法估计事件发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:
232 | 321 | 230 | 023 | 123 | 021 | 132 | 220 | 001 |
231 | 130 | 133 | 231 | 031 | 320 | 122 | 103 | 233 |
由此可以估计事件发生的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2014年联想集团以28亿收购摩托罗拉移动公司,并计划投资30亿元来发展改品牌,2014年摩托罗拉手机的销售量为100万部,据专家预测,从2015年起,摩托罗拉手机的销售量每年比上上一年增加100万部,每年的销售利润比上一年减少10%,已知2014年销售利润平均每部为300元.
(1)若2014年看作第一年,第n年的销售利润为多少?
(2)到2020年年底,中国联想集团能否通过摩托罗拉手机实现盈利?(即销售利润超过总投资)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com