精英家教网 > 高中数学 > 题目详情
5.函数f(x)=(m2-m-1)x4m+3是幂函数,对任意x1,x2∈(0,+∞),且x1≠x2,满足$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$,若a,b∈R,且a+b>0,ab<0.则f(a)+f(b)的值(  )
A.恒大于0B.恒小于0C.等于0D.无法判断

分析 由幂函数的性质推导出f(x)=x11,由此根据a,b∈R,且a+b>0,ab<0.得到f(a)+f(b)=a11+b11>0.

解答 解:∵函数f(x)=(m2-m-1)x4m+3是幂函数,
对任意x1,x2∈(0,+∞),且x1≠x2,满足$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$
∴$\left\{\begin{array}{l}{{m}^{2}-m-1=1}\\{4m+3>0}\end{array}\right.$,解得m=2,
∴f(x)=x11
∵a,b∈R,且a+b>0,ab<0.
∴f(a)+f(b)=a11+b11>0.
故选:A.

点评 本题考查函数值和的符号的判断,是基础 题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.在等腰直角三角形ABC中,AB=AC=a,且AD⊥BC于D,沿AD折成二面角B-AD-C后,$BC=\frac{{\sqrt{2}a}}{2}$,这时二面角B-AD-C的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若x1满足x+3x-1=4,x2满足x+log3(x-1)=4,则x1+x2=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线l经过点(3,2),且在两坐标轴上的截距相等,则直线l的方程是x+y=5或2x-3y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.记$min\{x,y\}=\left\{\begin{array}{l}y{,_{\;}}x≥y\\ x{,_{\;}}x<y\end{array}\right.$,设a,b为平面内的非零向量,则(  )
A.$min\{|\overrightarrow a+\overrightarrow b|,|\overrightarrow a-\overrightarrow b|\}≤min\{|\overrightarrow a|,|\overrightarrow b|\}$B.$min\{|\overrightarrow a+\overrightarrow b{|^2},|\overrightarrow a-\overrightarrow b{|^2}\}≥{\overrightarrow a^2}+{\overrightarrow b^2}$
C.$min\{|\overrightarrow a+\overrightarrow b|,|\overrightarrow a-\overrightarrow b|\}≥min\{|\overrightarrow a|,|\overrightarrow b|\}$D.$min\{|\overrightarrow a+\overrightarrow b{|^2},|\overrightarrow a-\overrightarrow b{|^2}\}≤{\overrightarrow a^2}+{\overrightarrow b^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知二次函数f(x)与x轴的两个交点分别是(-3,0),(5,0),且f(2)=15.
(1)求函数f(x)的解析式;
(2)令g(x)=(2-2m)x-f(x),求函数g(x)在x∈[0,2]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=ax3-x2+x-5在区间(1,2)上单调递增,则实数a的取值范围为[$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,若sin2A<0,则三角形为(  )
A.钝角三角形B.锐角三角形C.直角三角形D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.延川中学高二文科约有300人,其中特优班约有30人,实验班约有90人,普通班约有180人,想了解高二文科数学学习情况,现采用分层抽样抽取容量为30的样本进行考核,那么特优班、实验班、普通班各抽取的人数分别为(  )
A.6,9,15B.3,9,18C.3,6,11D.3,8,19

查看答案和解析>>

同步练习册答案