精英家教网 > 高中数学 > 题目详情

【题目】2018年9~12月某市邮政快递业务量完成件数较2017年9~12月同比增长25%,该市2017年9~12月邮政快递业务量柱形图及2018年9~12月邮政快递业务量结构扇形图如图所示,根据统计图,给出下列结论:

①2018年9~12月,该市邮政快递业务量完成件数约1500万件;

②2018年9~12月,该市邮政快递同城业务量完成件数与2017年9~12月相比有所减少;

③2018年9~12月,该市邮政快递国际及港澳台业务量同比增长超过75%,其中正确结论的个数为( )

A. 3

B. 2

C. 1

D. 0

【答案】B

【解析】

先计算出年的快递业务总数,乘以得到年的快递业务总数,根据扇形图计算出点各项业务的快递数,由此判断出正确的结论个数.

年的快递业务总数为万件,故年的快递业务总数为万件,故①正确.由此2018年9~12月同城业务量完成件数为万件,比年提升,故②错误.2018年9~12月国际及港澳台业务量万件,,故该市邮政快递国际及港澳台业务量同比增长超过.故③正确.综上所述,正确的个数为个,故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称三角形数列,对于三角形数列,如果函数使得仍为一个三角形数列,则称是数列保三角形函数

1)已知是首项为2,公差为1的等差数列,若是数列保三角形函数,求k的取值范围;

2)已知数列的首项为2010是数列的前n项和,且满足,证明三角形数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是直角坐标平面内y轴及y轴的右侧的动点,点到直线是正常数)的距离为,到点的距离为,且.

1)求动点所在曲线的方程;

2)直线过点且与曲线交于不同两点,分别过点作直线的垂线,对应的垂足分别为,记是(2)中的点),,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】费马点是指三角形内到三角形三个顶点距离之和最小的点。当三角形三个内角均小于时,费马点与三个顶点连线正好三等分费马点所在的周角,即该点所对的三角形三边的张角相等均为。根据以上性质,函数的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥PABC中,AB1BC2ACPCPAPBE是线段BC的中点.

1)求点C到平面APE的距离d

2)求二面角PEAB的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,且,点在二次函数的图象上.

1)试判断数列是否为算术平方根递推数列?若是,请说明你的理由;

2)记,求证:数列是等比数列,并求出通项公式

3)在数列中依据某种顺序从左至右取出其中的项,…,把这些项重新组成一个新数列,….若数列是首项为、公比为的无穷等比数列,且数列各项的和为,求正整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方形上连接等腰直角三角形,直角三角形上再连接正方形……如此无限重复下去,设正方形面积为,三角形面积为.当第一个正方形的边长为2时,则这些正方形和三角形的面积的总和为______.


查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数(其中为实数).

1)若,求零点的个数;

2)求证:若不是的极值点,则无极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位从一所学校招收某类特殊人才.对位已经选拔入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:

一般

良好

优秀

一般

良好

优秀

例如表中运动协调能力良好且逻辑思维能力一般的学生是人.由于部分数据丢失,只知道从这参加测试的学生中随机抽取一抽到逻辑思维能力优秀的学生的概率为

1的值;

2运动协调能力为优秀的学生中任意抽取,求其中至少有一位逻辑思维能力优秀的学生的概率.

查看答案和解析>>

同步练习册答案