精英家教网 > 高中数学 > 题目详情

【题目】

对定义在区间上的函数,若存在闭区间和常数,使得对任意的都有,且对任意的都有恒成立,则称函数为区间上的“U函数。

1)求证:函数上的“U函数;

2)设是(1)中的“U函数,若不等式对一切的恒成立,求实数的取值范围;

3)若函数是区间上的“U函数,求实数的值.

【答案】1)证明见解析;(2;(3 .

【解析】

1)当时,

时,

故存在闭区间和常数C=2符合条件,

所以函数上的“U函数

2)因为不等式对一切的恒成立,

所以

由(1)可知

所以

解得:

3)由“U函数定义知,存在闭区间和常数,使得对任意的

都有

所以对任意的成立分

所以

①当时,

时,

,即时,

由题意知,符合条件

②当时,

时,

,即时,

由题意知,不符合条件

综上所述,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

已知几何体A—BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.

1)求此几何体的体积V的大小;

2)求异面直线DEAB所成角的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R 且周期为1的函数,在区间上, 其中集合D=,则方程f(x)-lgx=0的解的个数是____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系上,有一点列,设点的坐标),其中 ,且满足).

1)已知点,点满足,求的坐标;

2)已知点),且)是递增数列,点在直线上,求

3)若点的坐标为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知几何体如图所示,其中两两互相垂直且,且.

1)求此几何体的体积;

2)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点A为该椭圆的左顶点,过右焦点的直线l与椭圆交于BC两点,当轴时,三角形ABC的面积为18

求椭圆的方程;

如图,当动直线BC斜率存在且不为0时,直线分别交直线ABAC于点MN,问x轴上是否存在点P,使得,若存在求出点P的坐标;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)若方程有两个不相等的实数根,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)求实数的值,使得为奇函数;

(2)若关于的方程有两个不同实数解,求的取值范围;

(3)若关于的不等式对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,DE分别为BCAC的中点,AB=BC

求证:(1A1B1∥平面DEC1

2BEC1E

查看答案和解析>>

同步练习册答案