【题目】如图,在梯形中,,,,四边形是直角梯形,,,,平面平面.
(1)求证:平面;
(2)在线段上是否存在一点,使得平面与平面所成的锐二面角的余弦值为,若存在,求出点的位置;若不存在,说明理由.
【答案】(1)见解析;(2)为线段的中点.
【解析】
(1)由余弦定理,结合勾股定理可证明,再利用面面垂直的性质定理可得结论;(2)先证明,以为原点,分别以,,所在直线为轴、轴、轴建立空间直角坐标系,设,取平面的一个法向量为,利用向量垂直数量积为零求出平面的一个法向量,利用空间向量夹角余弦公式求得,从而可得结果.
(1)在梯形中,, , ,
, ,
,,
平面平面,平面平面,
平面.
(2)平面,.如图,以为原点,分别以,,所在直线为轴、轴、轴建立空间直角坐标系,则,,,,,,,.设,
则,取平面的一个法向量为设平面的一个法向量为,
由,得,
令,得,,
为平面的一个法向量,
,解得,
即当为线段的中点时满足题意.
科目:高中数学 来源: 题型:
【题目】已知圆E经过M(﹣1,0),N(0,1),P(,)三点.
(1)求圆E的方程;
(2)若过点C(2,2)作圆E的两条切线,切点分别是A,B,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年2月25日,平昌冬奥会闭幕式上的“北京8分钟”惊艳了世界。我们学校为了让我们更好的了解奥运,了解新时代祖国的科技发展,在高二年级举办了一次知识问答比赛。比赛共设三关,第一、二关各有两个问题,两个问题全答对,可进入下一关;第三关有三个问题,只要答对其中两个问题,则闯关成功。每过一关可一次性获得分别为1、2、3分的积分奖励,高二、一班对三关中每个问题回答正确的概率依次为,且每个问题回答正确与否相互独立.
(1)记表示事件“高二、一班未闯到第三关”,求的值;
(2)记表示高二、一班所获得的积分总数,求的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的,,,四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是或作品获得一等奖”;
乙说:“作品获得一等奖”;
丙说:“,两项作品未获得一等奖”;
丁说:“是作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.
非一线城市 | 一线城市 | 总计 | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
总计 | 58 | 42 | 100 |
附表:
由算得,,
参照附表,得到的正确结论是
A. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”
B. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”
C. 有99%以上的把握认为“生育意愿与城市级别有关”
D. 有99%以上的把握认为“生育意愿与城市级别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.
(1)求证:PA∥平面BDE;
(2)求证:平面PAC⊥平面BDE.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)请用“五点法”画出函数在一个周期上的图象(先在所给的表格中填上所需的数字,再画图);
(2)求的单调递增区间;
(3)求在区间上的最大值和最小值及相应的的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).
(1)将V表示成r的函数V(r),并求该函数的定义域;
(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥,底面为菱形, ,H为上的点,过的平面分别交于点,且平面.
(1)证明: ;
(2)当为的中点, ,与平面所成的角为,求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com