精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆,抛物线焦点均在x轴上,的中心和顶点均在原点O,从每条曲线上各取两个点,将其坐标记录于表中,则的左焦点到的准线之间的距离为( )

3

-2

4

0

-4

A.B.C.1D.2

【答案】B

【解析】

由题意可知,椭圆和抛物线的方程都是标准方程,由表格中的数据验证可知点和点在抛物线上, 两个点在椭圆,由此可求得抛物线和椭圆的方程,再求得抛物线的准线和椭圆的左焦点坐标,从而可得答案.

由表格中的数据可知,抛物线的焦点在轴正半轴上,

设抛物线,

当点在抛物线上时,可得,解得,

当点在抛物线上时,可得,解得,

当点在抛物线上时,可得,解得,

因为这三个点中,有两个点在抛物线上,所以只能是点和点在抛物线上,所以,所以抛物线的方程为,其准线方程为,

所以另外两个点在椭圆,

依题意设椭圆的方程为,代入可得,

,,解得,

所以椭圆的方程为,其左焦点为,

所以的左焦点到的准线之间的距离为,

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极坐标建立极坐标系,圆的极坐标方程为.

的普通方程;

将圆平移,使其圆心为,设是圆上的动点,点关于原点对称,线段的垂直平分线与相交于点,求的轨迹的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M的方程为x2+y2-2x-2y-6=0,以坐标原点O为圆心的圆O与圆M相切.

1)求圆O的方程;

2)圆Ox轴交于EF两点,圆O内的动点D使得DEDODF成等比数列,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据

(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种设备随着使用年限的增加,每年的维护费相应增加.现对一批该设备进行调查,得到这批设备自购入使用之日起,前5年平均每台设备每年的维护费用大致如表:

年份(年)

维护费(万元)

(I)从这年中随机抽取两年,求平均每台设备每年的维护费用至少有年多于万元的概率;

(II)求关于的线性回归方程;若该设备的价格是每台万元,你认为应该使用满五年换一次设备,还是应该使用满八年换一次设备?并说明理由.

参考公式:用最小二乘法求线性回归方程的系数公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴正半轴为极轴建立极坐标系,点的极坐标为,斜率为的直线经过点.

(I)求曲线的普通方程和直线的参数方程;

(II)设直线与曲线相交于两点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)若处取得极值,求过点且与处的切线平行的直线方程;

(II)当函数有两个极值点,且时,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国经济实力的不断提升,居民收人也在不断增加。某家庭2018年全年的收入与2014年全年的收入相比增加了一倍,实现翻番.同时该家庭的消费结构随之也发生了变化,现统计了该家庭这两年不同品类的消费额占全年总收入的比例,得到了如下折线图:

则下列结论中正确的是( )

A. 该家庭2018年食品的消费额是2014年食品的消费额的一半

B. 该家庭2018年教育医疗的消费额与2014年教育医疗的消费额相当

C. 该家庭2018年休闲旅游的消费额是2014年休闲旅游的消费额的五倍

D. 该家庭2018年生活用品的消费额是2014年生活用品的消费额的两倍

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照分成5组,制成如图所示频率分直方图.

1)求图中x的值;

2)求这组数据的平均数和中位数;

3)已知满意度评分值在内的男生数与女生数3:2,若在满意度评分值为的人中随机抽取2人进行座谈,求2人均为男生的概率.

查看答案和解析>>

同步练习册答案