精英家教网 > 高中数学 > 题目详情

【题目】已知直线l的参数方程为 (t为参数),以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,圆C的极坐标方程为
(1)求圆C的直角坐标方程;
(2)若P(x,y)是直线l与圆面 的公共点,求 的取值范围.

【答案】
(1)解:因为圆C的极坐标方程为

所以

所以圆C的直角坐标方程


(2)解:由圆C的方程 ,可得

所以圆C的圆心是 ,半径是2,

,代入 ,得u=4﹣t,

又直线l过 ,圆C的半径是2,所以﹣2≤t≤2,

的取值范围是[2,6]


【解析】(Ⅰ)圆C的极坐标方程转化为 ,由此能求出圆C的直角坐标方程.(Ⅱ)由圆C的方程转化为 ,得到圆C的圆心是 ,半径是2,将 ,代入 ,得u=4﹣t,由此能求出 的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=e2x+ln(x+a).
(1)当a=1时,①求f(x)在(0,1)处的切线方程;②当x≥0时,求证:f(x)≥(x+1)2+x.
(2)若存在x0∈[0,+∞),使得 成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x,y∈R.
(Ⅰ)若x,y满足 ,求证:
(Ⅱ)求证:x4+16y4≥2x3y+8xy3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:

现对某城市30天的空气质量进行监测,获得30API数据(每个数据均不同),统计绘得频率分布直方图如图.

(1)请由频率分布直方图来估计这30API 的平均值;

(2)若从获得的空气质量优空气质量中重度污染的数据中随机选取个数据进行复查,求空气质量优空气质量中重度污染数据恰均被选中的概率;

(3)假如企业每天由空气污染造成的经济损失S(单位:元)与空气质量指数API (记为)的关系式为

若将频率视为概率,在本年内随机抽取一天,试估计这天的经济损失S不超过600元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】朱载堉(1536~1611),是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的2倍.设第三个音的频率为,第七个音的频率为,则

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为矩形,且平面, ,的中点.

(1)求证:

(2)求三棱锥的体积;

(3)探究在上是否存在点,使得平面,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1与圆C2相交于AB两点,

(1)求公共弦AB所在的直线方程;

(2)求圆心在直线上,且经过AB两点的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,椭圆过点,直线轴于,且为坐标原点.

1)求椭圆的方程;

2)设是椭圆的上顶点,过点分别作直线交椭圆两点,设这两条直线的斜率分别为,且,证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且a2=8,Sn= ﹣n﹣1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{ }的前n项和Tn

查看答案和解析>>

同步练习册答案