【题目】将函数y=cos2x的图象向左平移 个单位,得到函数y=f(x)cosx的图象,则f(x)的表达式可以是( )
A.f(x)=﹣2sinx
B.f(x)=2sinx
C.f(x)= sin2x
D.f(x)= (sin2x+cos2x)
科目:高中数学 来源: 题型:
【题目】在一次国际学术会议上,来自四个国家的五位代表被安排坐在一张圆桌,为了使他们能够自由交谈,事先了解到的情况如下:
甲是中国人,还会说英语.
乙是法国人,还会说日语.
丙是英国人,还会说法语.
丁是日本人,还会说汉语.
戊是法国人,还会说德语.
则这五位代表的座位顺序应为( )
A.甲丙丁戊乙
B.甲丁丙乙戊
C.甲乙丙丁戊
D.甲丙戊乙丁
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ﹣k( +lnx),若x=2是函数f(x)的唯一一个极值点,则实数k的取值范围为( )
A.(﹣∞,e]
B.[0,e]
C.(﹣∞,e)
D.[0,e)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2eax .
(Ⅰ)当a<0时,讨论函数f(x)的单调性;
(Ⅱ)在(1)条件下,求函数f(x)在区间[0,1]上的最大值;
(Ⅲ)设函数g(x)=2ex﹣ ,求证:当a=1,对x∈(0,1),g(x)﹣xf(x)>2恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】解答题
(Ⅰ)已知函数f(x)=|x+1|+|x﹣a|(a>0),若不等式f(x)≥5的解集为{x|x≤﹣2或x≥3},求a的值;
(Ⅱ) 已知实数a,b,c∈R+ , 且a+b+c=m,求证: + + ≥ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)判断并证明函数的奇偶性;
(2)判断当时函数的单调性,并用定义证明;
(3)若定义域为,解不等式.
【答案】(1)奇函数(2)增函数(3)
【解析】试题分析:(1)判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。(2)利函数单调性定义证明单调性,按假设,作差,化简,判断,下结论五个步骤。(3)由(1)(2)奇函数在(-1,1)为单调函数,
原不等式变形为f(2x-1)<-f(x),即f(2x-1)<f(-x),再由函数的单调性及定义(-1,1)求解得x范围。
试题解析:(1)函数为奇函数.证明如下:
定义域为
又
为奇函数
(2)函数在(-1,1)为单调函数.证明如下:
任取,则
,
即
故在(-1,1)上为增函数
(3)由(1)、(2)可得
则
解得:
所以,原不等式的解集为
【点睛】
(1)奇偶性:判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。
(2)单调性:利函数单调性定义证明单调性,按假设,作差,化简,定号,下结论五个步骤。
【题型】解答题
【结束】
22
【题目】已知函数.
(1)若的定义域和值域均是,求实数的值;
(2)若在区间上是减函数,且对任意的,都有,求实数的取值范围;
(3)若,且对任意的,都存在,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a1 , a2 , …,an∈R,n≥3.若p:a1 , a2 , …,an成等比数列;q:(a +a +…+a )(a +a +…+a )=(a1a2+a2a3+…+an1an)2 , 则p是q的条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=2017x+sin2017x,g(x)=log2017x+2017x , 则( )
A.对于任意正实数x恒有f(x)≥g(x)
B.存在实数x0 , 当x>x0时,恒有f(x)>g(x)
C.对于任意正实数x恒有f(x)≤g(x)
D.存在实数x0 , 当x>x0时,恒有f(x)<g(x)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com