精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)求的最大值;

2)若对于任意的,不等式恒成立,求整数a的最小值.(参考数据

【答案】10;(23

【解析】

1)先利用导数分析的单调性,即可求解;

2)先构造两函数之差为,本题转化为,从而需分析的单调性.时,用特值法得,得到不合题意;当时,分析的单调性得,再令 ,利用单调递减和特值确定当时,,得到整数a的最小值为3.

(1)

,即,解得,令,即

解得.∴函数上单调递增,在上单调递减;

的最大值为.

(2)令

所以.

时,因为,所以.

所以上是递增函数,

又因为

所以关于x的不等式不能恒成立.

时,

,得.

所以当时,

时,

因此函数是增函数,在是减函数.

故函数的最大值为

因为

是减函数.

所以当时,.

所以整数a的最小值为3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆,左、右顶点分别为,上、下顶点分别为,且为等边三角形,过点的直线与椭圆轴右侧的部分交于两点,为坐标原点.

1)求椭圆的标准方程;

2)求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以坐标原点为极点,以轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线的参数方程为为参数).

1)点在曲线上,且曲线在点处的切线与直线:垂直,求点的直角坐标;

2)设直线与曲线有且只有一个公共点,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某普通高中为了解本校高三年级学生数学学习情况,对一模考试数学成绩进行分析,从中抽取了名学生的成绩作为样本进行统计(该校全体学生的成绩均在),按下列分组作出频率分布直方图,如图;样本中分数在内的所有数据的茎叶图如图

根据往年录取数据划出预录分数线,分数区间与可能被录取院校层次如表.

(1)求的值及频率分布直方图中的值;

(2)根据样本估计总体的思想,以事件发生的频率作为概率,若在该校高三年级学生中任取人,求此人都不能录取为专科的概率;

(3)在选取的样本中,从可能录取为自招和专科两个层次的学生中随机抽取名学生进行调研,用表示所抽取的名学生中为自招的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求在区间的最大值;

2)若函数有两个极值点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点与短轴的两端点组成一个正三角形的三个顶点,且椭圆经过点.

1)求椭圆的方程;

2)设直线与椭圆交于两点,且以线段为直径的圆过椭圆的右顶点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森()又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足.其中星等为的星的亮度为.已知心宿二的星等是1.00.“天津四的星等是1.25.“心宿二的亮度是天津四倍,则与最接近的是(较小时, )

A.1.24B.1.25C.1.26D.1.27

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某教研机构随机抽取某校20个班级,调查各班关注汉字听写大赛的学生人数,根据所得数据的茎叶图,以组距为5将数据分组成时,所作的频率分布直方图如图所示,则原始茎叶图可能是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是抛物线的焦点,点轴上,为坐标原点,且满足,经过点且垂直于轴的直线与抛物线交于两点,且.

1)求抛物线的方程;

2)直线与抛物线交于两点,若,求点到直线的最大距离.

查看答案和解析>>

同步练习册答案