精英家教网 > 高中数学 > 题目详情
15.直角坐标系xOy中,以坐标原点O为圆心的圆与直线$y=x+2\sqrt{2}$相切.
(1)求圆O的方程;
(2)圆O与x轴交于A,B两点,圆内动点P,使得|PA|,|PO|,|PB|成等比数列,求$\overrightarrow{PA}•\overrightarrow{PB}$的取值范围.

分析 (1)求出圆心O到直线l的距离得圆的半径r,写出圆的方程即可;
(2)设出点P的坐标,求出A、B的坐标,由PA,PO,PB成等比数列,得出x、y的关系式,再求$\overrightarrow{PA}•\overrightarrow{PB}$的取值范围即可.

解答 解:(1)圆心到直线的距离为2,所以可得圆O的方程:x2+y2=4.…(4分)
(2)圆O与x轴交于A,B两点,则A(-2,0),B(2,0),设P(x,y),则
∵|PA|,|PO|,|PB|成等比数列,
∴${x^2}+{y^2}=\sqrt{{{({x+2})}^2}+{y^2}}\sqrt{{{({x-2})}^2}+{y^2}}$,即x2-y2=2,
∴$\overrightarrow{PA}•\overrightarrow{PB}={x^2}-4+{y^2}=2({{y^2}-1})$,
∵x2+y2<4且x2-y2=2,
∴0≤y2<1,
∴$\overrightarrow{PA}•\overrightarrow{PB}$的取值范围为[-2,0).…(12分)

点评 本题考查了直线与圆的应用问题,也考查了平面向量的应用问题,考查了等比中项的应用问题,是综合题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C的对边分别为a,b,c,且$a=4,cosA=\frac{3}{4},sinB=\frac{{5\sqrt{7}}}{16},c>4$.
(1)求b;
(2)已知△ABC内切圆的半径$r=\frac{2S}{l}$,其中S为△ABC的面积,l为△ABC的周长,求△ABC内切圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx-x2+ax,
(1)当x∈(1,+∞)时,函数f(x)为递减函数,求a的取值范围;
(2)设f'(x)是函数f(x)的导函数,x1,x2是函数f(x)的两个零点,且x1<x2,求证$f'({\frac{{{x_1}+{x_2}}}{2}})<0$
(3)证明当n≥2时,$\frac{1}{ln2}+\frac{1}{ln3}+\frac{1}{ln4}+…+\frac{1}{lnn}>1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列四个命题中,其中真命题是(  )
①“若xy=1,则lgx+lgy=0”的逆命题;
②“若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,则$\overrightarrow{a}$⊥($\overrightarrow{b}$-$\overrightarrow{c}$)”的否命题;
③“若b≤0,则方程x2-2bx+b2+b=0有实根”的逆否命题;
④“等边三角形的三个内角均为60°”的逆命题.
A.①②B.①②③④C.②③④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一个容量为20的样本数椐,分组后,组距与频数如下:第1组:(10,20],2个;第2组:(20,30],3个;第3组:(30,40],4个;第4组:(40,50],5个;第5组:(50,60],4个;第6组:(60,70],2个.则样本在区间[50,+∞)上的频率为0.3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若椭圆$\frac{x^2}{16}+\frac{y^2}{8}=1$的弦被点(2,1)平分,则此弦所在的直线方程是(  )
A.x+y-3=0B.x+2y-4=0C.2x+13y-14=0D.x+2y-8=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.一动圆与圆${F_1}:{(x+1)^2}+{y^2}=9$内切,与圆${F_2}:{(x-1)^2}+{y^2}=1$外切.
(1)求动圆圆心M的轨迹L的方程;
(2)设过圆心F2的直线l:x=my+1与轨迹L相交于A,B两点,请问△ABF1的面积是否存在最大值?若存在,求出这个最大值及直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若关于x的方程9x+(a+4)•3x+4=0有实数解,则实数a的取值范围是(  )
A.(-∞,-8]∪[0,+∞)B.(-∞,-4)C.[-8,-4)D.(-∞,-8]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,以原点为圆心,半径为b的圆与直线y=x+$\sqrt{6}$相切.
(1)求椭圆C的标准方程;
(2)已知椭圆C的上顶点为B,过点B且互相垂直的动直线l1,l2与椭圆的另一个交点分别为P,Q,设直线PQ与y轴相交于点M,若$\overrightarrow{PM}$=λ$\overrightarrow{MQ}$,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案