精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱ABC﹣A1B1C1的侧棱与底面垂直,AC=9,BC=12,AB=15,AA1=12,
点D是AB的中点.

(1)求证:AC⊥B1C
(2)求证:AC1∥平面CDB1

【答案】
(1)证明:∵C1C⊥平面ABC,AC面ABC,∴C1C⊥AC.

∵AC=9,BC=12,AB=15,∴AC⊥BC. 又 BC∩C1C=C,

∴AC⊥平面BCC1B1,而B1C平面BCC1B1,∴AC⊥B1C


(2)证明:连接BC1交B1C于O点,连接OD,

∵O,D分别为BC1,AB的中点,

∴OD∥AC1,又OD平面CDB1,AC1平面CDB1

∴AC1∥平面CDB1


【解析】(1)证明C1C⊥AC,AC⊥BC,可得AC⊥平面BCC1B1 , 而B1C平面BCC1B1 , 故AC⊥B1C.(2)连接BC1交B1C于O点,由三角形中位线的性质得OD∥AC1 , 又OD平面CDB1 , 可得AC1∥平面CDB1
【考点精析】关于本题考查的直线与平面平行的判定和直线与平面垂直的性质,需要了解平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行;垂直于同一个平面的两条直线平行才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=b+logax(x>0且a≠1)的图象经过点(8,2)和(1,﹣1).
(1)求f(x)的解析式;
(2)[f(x)]2=3f(x),求实数x的值;
(3)令y=g(x)=2f(x+1)﹣f(x),求y=g(x)的最小值及其最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形DCFE为正方形,四边形ABCD为等腰梯形,AB∥CD,AC= ,AB=2BC=2,且AC⊥FB.
(1)求证:平面EAC⊥平面FCB;
(2)若线段AC上存在点M,使AE∥平面FDM,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将正弦曲线y=sinx上所有的点向右平移 π个单位长度,再将图象上所有点的横坐标变为原来的 倍(纵坐标不变),则所得到的图象的函数解析式y=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的左、右焦点为F1(﹣2,0),F2(2,0),点M(﹣2, ) 在椭圆C上.
(1)求椭圆C的标准方程;
(2)已知斜率为k的直线l过椭圆C的右焦点F2 , 与椭圆C相交于A,B两点.
①若|AB|= ,求直线l的方程;
②设点P( ,0),证明: 为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=sinωx(ω>0)的图象向右平移 个单位后得到函数g(x)的图象,若对于满足|f(x1)﹣g(x2)|=2的x1 , x2 , 有|x1﹣x2|min= ,则f( )的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一个周期内的图象时,列表并填入了部分数据,如表:

ωx+φ

0

π

x

f(x)

0

3

0

﹣3

0


(1)请将表中数据补充完整,并直接写出函数f(x)的解析式;
(2)若将函数f(x)的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到函数g(x)的图象,求当x∈[﹣ ]时,函数g(x)的值域;
(3)若将y=f(x)图象上所有点向左平移θ(θ>0)个单位长度,得到y=h(x)的图象,若=h(x)图象的一个对称中心为( ),求θ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1﹣ 为定义在R上的奇函数.
(1)求f(x)的解析式;
(2)判断f(x)的单调性,并用定义证明;
(3)若f(lnm)+f(2lnn)≤1﹣3lnm,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点.

(1)求证:直线AE⊥平面A1D1E;
(2)求二面角E﹣AD1﹣A1的平面角的余弦值.

查看答案和解析>>

同步练习册答案