精英家教网 > 高中数学 > 题目详情

【题目】某城市理论预测2000年到2004年人口总数与年份的关系如下表所示

年份200(年)

0

1

2

3

4

人口数 (十万)

5

7

8

11

19

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;

(3)据此估计2005年该城市人口总数.

参考公式: 用最小二乘法求线性回归方程系数公式

【答案】(1)见解析(2)(3)196万

【解析】试题分析:(1)根据表格描点即可画出上表数据的散点图;(2)利用回归系数公式计算回归系数样本中心点坐标代入后可得的值,从而得出回归方程;(3)利用回归方程估计时的函数值即可.

试题解析:(1)

(2)

0×5+1×7+2×8+3×11+4×19=132,

, , .

(3)当时, ,所以2005年该城市人口总数为196万.

【方法点晴】本题主要考查散点图的画法和线性回归方程,属于难题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;(2) 回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数的最小值为,求的值;

(2)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工科院校对AB两个专业的男女生人数进行调查,得到如下的列联表:


专业A

专业B

总计

女生

12

4

16

男生

38

46

84

总计

50

50

100

(1)B专业的女生中随机抽取2名女生参加某项活动,其中女生甲被选到的概率是多少?

(2)能否在犯错误的概率不超过0.05的前提下,认为工科院校中性别专业有关系呢?

注:K2

P(K2k0)

0.25

0.15

0.10

0.05

0.025

k0

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线.

)已知G,H分别为ECFB的中点,求证:GH∥平面ABC

)已知EF=FB=AC=AB=BC.求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解校园安全教育系列活动的成效,对全校3000名学生进行一次安全意识测试,根据测试成绩评定“优秀”、“良好”、“及格”、“不及格”四个等级,现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下所示.

等级

不及格

及格

良好

优秀

得分

频数

6

24

1)求的值;

2)试估计该校安全意识测试评定为优秀的学生人数;

3)已知已采用分层抽样的方法,从评定等级为优秀良好的学生中任选6人进行强化培训;现再从这6人中任选2人参加市级校园安全知识竞赛,求选取的2人中有1人为优秀的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电视台在一次对收看文艺节目和新闻节目的抽样调查中,随机抽取了100名电视观众,相关的数据如表所示:

类别

文艺节目

新闻节目

总计

20至40岁

40

18

58

大于40岁

15

27

42

总计

55

45

100

(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?

(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,则大于40岁的观众应该抽取几名?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:

上年度出险次数

0

1

2

3

4

≥5

保费

0.85a

a

1.25a

1.5a

1.75a

2a

随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:

出险次数

0

1

2

3

4

≥5

频数

60

50

30

30

20

10

(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;

(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;

(3)求续保人本年度平均保费的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有三个球,第一个球内切于正方体的六个面,第二个球与这个正方体的各条棱相切,第三个球过这个正方体的各个顶点,若正方体的棱长为,求这三个球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中是函数的导数.

(1)求的单调区间;

(2)对于,不等式恒成立,求的最大值.

查看答案和解析>>

同步练习册答案