精英家教网 > 高中数学 > 题目详情
如图,在多面体ABCD﹣EF中,四边形ABCD为正方形,EFAB,EF⊥EA,AB=2EF,
∠AED=90°,AE=ED,H为AD的中点.
(Ⅰ)求证:EH平面FAC;
(Ⅱ)求证:EH⊥平面ABCD;
(Ⅲ)求二面角A﹣FC﹣B的大小.
(Ⅰ)证明:AC∩BD=O,连接HO,FO
因为ABCD为正方形,所以O是AC中点,
又H是AD中点,
所以
所以EF∥OH且EF=OH,
所以四边形EHOF为平行四边形,
所以EHFO,
又因为FO平面FAC,EH平面FAC.
所以EH平面FAC.
(Ⅱ)证明:因为AE=ED,H是AD的中点,
所以EH⊥AD
又因为ABEF,EF⊥EA,所以AB⊥EA
又因为AB⊥AD,所以AB⊥平面AED,
因为EH平面AED,
所以AB⊥EH,
所以EH⊥平面ABCD.
(Ⅲ)解:AC,BD,OF两两垂直,建立如图所示的坐标系,
设EF=1,则AB=2,,F(0,0,1)
设平面BCF的法向量为
所以
平面AFC的法向量为
.                      
二面角A﹣FC﹣B为锐角,
所以二面角A﹣FC﹣B等于

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在多面体ABC-A1B1C1中,AA1⊥平面ABC,AA1
.
BB1AB=AC=AA1=
2
2
BC,B1C1
.
1
2
BC

(1)求证:A1B1⊥平面AA1C;
(2)求证:AB1∥平面A1C1C;
(3)求二面角C1-A1C-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=
2
AB
B1C1
.
.
1
2
BC
,二面角A1-AB-C是直二面角.
(Ⅰ)求证:AB1∥平面 A1C1C;
(Ⅱ)求BC与平面A1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛二模)如图,在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求证:面A1AC⊥面ABC;
(Ⅱ)求证:AB1∥面A1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•合肥一模)如图,在多面体ABC-A1B1C1中,AA1⊥平面ABC,AA1⊥平面ABC,AA1∥=BB1,AB=AC=AA1=
2
2
BC
,B1C1∥=
1
2
BC

(1)求证:A1B1⊥平面AA1C;
(2)若D是BC的中点,求证:B1D∥平面A1C1C;
(3)若BC=2,求几何体ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•郑州二模)如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=
2
AB,B1C1
.
1
2
BC
,二面角A1-AB-C是直二面角.
(I)求证:A1B1⊥平面AA1C; 
(II)求证:AB1∥平面 A1C1C;
(II)求BC与平面A1C1C所成角的正弦值.

查看答案和解析>>

同步练习册答案