£¨2013•³çÃ÷ÏØһģ£©ÒÑÖªÊýÁÐ{an}£¬¼ÇA£¨n£©=a1+a2+a3+¡­+an£¬B£¨n£©=a2+a3+a4+¡­+an+1£¬C£¨n£©=a3+a4+a5+¡­+an+2£¬£¨n=1£¬2£¬3£¬¡­£©£¬²¢ÇÒ¶ÔÓÚÈÎÒân¡ÊN*£¬ºãÓÐan£¾0³ÉÁ¢£®
£¨1£©Èôa1=1£¬a2=5£¬ÇÒ¶ÔÈÎÒân¡ÊN*£¬Èý¸öÊýA£¨n£©£¬B£¨n£©£¬C£¨n£©×é³ÉµÈ²îÊýÁУ¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Ö¤Ã÷£ºÊýÁÐ{an}Êǹ«±ÈΪqµÄµÈ±ÈÊýÁеijä·Ö±ØÒªÌõ¼þÊÇ£º¶ÔÈÎÒân¡ÊN*£¬Èý¸öÊýA£¨n£©£¬B£¨n£©£¬C£¨n£©×é³É¹«±ÈΪqµÄµÈ±ÈÊýÁУ®
·ÖÎö£º£¨1£©ÓɵȲîÖÐÏ¼ò¿ÉµÃan+2-an+1=a2-a1=4£¬n¡ÊN*£¬¿ÉµÃ{an}ΪµÈ²îÊýÁУ¬½ø¶ø¿ÉµÃͨÏʽ£»
£¨2£©ÓɵȱÈÊýÁеĶ¨Ò壬½áºÏÌâÒâ´Ó³ä·ÖÐԺͱØÒªÐÔÁ½·½ÃæÀ´Ö¤Ã÷£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ2B£¨n£©=A£¨n£©+C£¨n£©£¬
´úÈë¿ÉµÃ2£¨a2+a3+a4+¡­+an+1£©=£¨a1+a2+a3+¡­+an£©+£¨a3+a4+¡­+an+2£©£¬
»¯¼ò¿ÉµÃan+2-an+1=a2-a1=4£¬n¡ÊN*£¬ËùÒÔ£®
¡àÊýÁÐ{an}µÄͨÏʽan=4n-3£¬n¡ÊN*
£¨2£©£¨±ØÒªÐÔ£©ÈôÊýÁÐ{an}Êǹ«±ÈΪqµÄµÈ±ÈÊýÁУ¬
Ôò
B(n)
A(n)
=
a2+a3+¡­+an+1
a1+a2+¡­an
=q
£¬
C(n)
B(n)
=
a3+a4+¡­+an+2
a2+a3+¡­an+1
=q
£¬
ËùÒÔA£¨n£©¡¢B£¨n£©¡¢C£¨n£©×é³É¹«±ÈΪqµÄµÈ±ÈÊýÁУ®
£¨³ä·ÖÐÔ£©£ºÈô¶ÔÓÚÈÎÒân¡ÊN*£¬Èý¸öÊýA£¨n£©£¬B£¨n£©£¬C£¨n£©×é³É¹«±ÈΪqµÄµÈ±ÈÊýÁУ¬
ÔòB£¨n£©=qA£¨n£©£¬C£¨n£©=qB£¨n£©£¬
ÓÚÊÇC£¨n£©-B£¨n£©=q[B£¨n£©-A£¨n£©]£¬µÃan+2-a2=q£¨an+1-a1£©£¬¼´an+2-qan+1=a2-a1£®
ÓÉn=1ÓÐB£¨1£©=qA£¨1£©£¬¼´a2=qa1£¬´Ó¶øan+2-qan+1=0£®
ÒòΪan£¾0£¬ËùÒÔ
an+2
an+1
=
a2
a1
=q
£¬¹ÊÊýÁÐ{an}ÊÇÊ×ÏîΪa1£¬¹«±ÈΪqµÄµÈ±ÈÊýÁУ®
×ÛÉϿɵã¬ÊýÁÐ{an}Êǹ«±ÈΪqµÄµÈ±ÈÊýÁеijäÒªÌõ¼þÊǶÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐA£¨n£©¡¢B£¨n£©¡¢C£¨n£©×é³É¹«±ÈΪqµÄµÈ±ÈÊýÁУ®
µãÆÀ£º±¾ÌâÒԵȲîÊýÁеȱÈÊýÁÐΪÔØÌ壬¿¼²é³äÒªÌõ¼þµÄÅжϣ¬Êô»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•³çÃ÷ÏØһģ£©(x2-
1x
)5
Õ¹¿ªÊ½ÖÐx4µÄϵÊýÊÇ
10
10
£®£¨ÓÃÊý×Ö×÷´ð£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•³çÃ÷ÏØһģ£©É踴Êýz£¨2-i£©=11+7i£¨iΪÐéÊýµ¥Î»£©£¬Ôòz=
3+5i
3+5i
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•³çÃ÷ÏØһģ£©ÈôԲ׶µÄ²àÃæÕ¹¿ªÍ¼Êǰ뾶Ϊ1cm¡¢Ô²ÐĽÇΪ180¡ãµÄ°ëÔ²£¬ÔòÕâ¸öԲ׶µÄÖá½ØÃæÃæ»ýµÈÓÚ
3
4
3
4
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•³çÃ÷ÏØһģ£©ÊýÁÐ{an}µÄͨÏʽÊÇan=
1
n+1
 (n=1£¬2)
1
3n
 (n£¾2)
£¬Ç°nÏîºÍΪSn£¬Ôò
lim
n¡ú¡Þ
Sn
=
8
9
8
9
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸