精英家教网 > 高中数学 > 题目详情
14.已知数列{an}满足:a1=1,a2=2,正项数列{bn}满足bn=anan+1(n∈N*),若{bn}是公比为2的等比数列
(Ⅰ)求{an}的通项公式;
(Ⅱ)Sn为{an}的前n项和,且Sn>2016恒成立,求正整数n的最小值n0

分析 (Ⅰ)由$\frac{{{b_{n+1}}}}{b_n}=\frac{{{a_{n+1}}{a_{n+2}}}}{{{a_n}{a_{n+1}}}}=\frac{{{a_{n+2}}}}{a_n}=2$,可得数列{an}奇数项成等比数列,偶数项也成等比数列,公比都是2.即可得出.
(II)对n分类讨论,利用求和公式即可得出,再利用不等式的性质即可得出.

解答 解:(Ⅰ)∵$\frac{{{b_{n+1}}}}{b_n}=\frac{{{a_{n+1}}{a_{n+2}}}}{{{a_n}{a_{n+1}}}}=\frac{{{a_{n+2}}}}{a_n}=2$,∴数列{an}奇数项成等比数列,偶数项也成等比数列,公比都是2.
∵a1=1,a2=2,∴${a_n}=\left\{\begin{array}{l}{(\sqrt{2})^{n-1}},n为正奇数\\{(\sqrt{2})^n},n为正偶数\end{array}\right.$.
(Ⅱ)当n是偶数时Sn=(a1+a2)+(a3+a4)+(a5+a6)+…+(an-1+an)=$3+3•2+3•4+…+3•{2^{\frac{n}{2}-1}}$
=$3•{2^{\frac{n}{2}}}-3$,
由$3•{2^{\frac{n}{2}}}-3>2016$,得${2^{\frac{n}{2}}}>673$,∴n≥20.
当n是奇数时${S_n}={S_{n-1}}+{a_n}=3•{2^{\frac{n-1}{2}}}-3+{2^{\frac{n-1}{2}}}^{\;}$=$4•{2^{\frac{n-1}{2}}}-3$,
由$4•{2^{\frac{n-1}{2}}}-3≥2016$得 ${2^{\frac{n+3}{2}}}≥2019$,
∴n≥19.
综上可得,n0=19.

点评 本题考查了递推公式、数列求和、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知抛物线y2=4x,点P(a,0)是x轴上一点,过点P作直线l与该抛物线相交于不同的两点A、B
(Ⅰ)若直线l的斜率为1,当点P在x轴上运动时,求线段AB中点M的轨迹方程;
(Ⅱ)点F为该抛物线的焦点,若a=-1,且|AF|=2|BF|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(0,1),且离心率为$\frac{\sqrt{3}}{2}$.
(1)求椭圆C的方程;
(2)已知点A(1,0),点P是椭圆C上的一个动点,求|PA|的最小值及此时P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在等比数列{an}中,a1+an=34,a2•an-1=64,且前n项和Sn=62,则项数n=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.m,n,l为不重合的直线,α,β,γ为不重合的平面,则下列说法正确的是(  )
A.m⊥l,n⊥l,则m∥nB.α⊥γ,β⊥γ,则α⊥βC.m∥α,n∥α,则m∥nD.α∥γ,β∥γ,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若$acos({π-A})+bsin({\frac{π}{2}+B})=0$,内角A,B的对边分别为a,b,则三角形ABC的形状为等腰三角形或直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知y=x3•lnx,求y′.
(2)已知y=$\frac{1-{x}^{2}}{{e}^{x}}$,求y′.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=$\frac{{e}^{x}}{x}$的极小值为e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1、F2,P为双曲线上一点,且满足|OP|=$\sqrt{11}$a,|F1F2|是|PF1|与|PF2|的等比中项,则该双曲线的离心率为(  )
A.2B.3C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案