精英家教网 > 高中数学 > 题目详情
4.如图,四边形ABCD是圆内接四边形,BA、CD的延长线交于点P,且AB=AD,BP=2BC
(Ⅰ)求证:PD=2AB;
(Ⅱ)当BC=2,PC=5时.求AB的长.

分析 (Ⅰ)证明:△APD∽△CPB,利用AB=AD,BP=2BC,证明PD=2AB;
(Ⅱ)利用割线定理求AB的长.

解答 (Ⅰ)证明:∵四边形ABCD是圆内接四边形,
∴∠PAD=∠PCB,
∴∠APD=∠CPB,
∴△APD∽△CPB,
∴$\frac{PD}{PB}$=$\frac{AD}{CB}$,
∵BP=2BC
∴PD=2AD,
∴AB=AD,
∴PD=2AB;
(Ⅱ)解:由题意,BP=2BC=4,设AB=t,由割线定理得PD•PC=PA•PB,
∴2t×5=(4-t)×4
∴t=$\frac{8}{7}$,即AB=$\frac{8}{7}$.

点评 本题考查三角形相似的判断,考查割线定理,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.下列说法正确的个数是(  )
①若f(x)=$\frac{1}{{2}^{x}+1}$+a为奇函数,则a=$\frac{1}{2}$;
②“在△ABC中,若sinA>sinB,则A>B”的逆命题是假命题;
③“三个数a,b,c成等比数列”是“b=$\sqrt{ac}$”的既不充分也不必要条件;
④命题“?x∈R,x3-x2+1≤0”的否定是“?x0∈R,x03-x02+1>0”.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等差数列{an}满足a3+a9=2,则a6=(  )
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.动点P到点M(3,0)及点N(1,0)的距离之差为2,则点P的轨迹是(  )
A.双曲线B.双曲线的一支C.两条射线D.一条射线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知tanx=$\frac{1}{2}$,则sin2($\frac{π}{4}$+x)=(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{3}{5}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,若a2-b2=c(b+c),则A=(  )
A.60°B.120°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图点P在平面区域$\left\{\begin{array}{l}{2x-y+2≥0}\\{x-2y+1≤0}\\{x+y-2≤0}\end{array}\right.$上,点Q在曲线x2+(y+$\frac{3}{2}$)2=1上,那么|PQ|的最小值为(  )
A.$\sqrt{5}$-1B.$\frac{4}{\sqrt{5}}$-1C.2$\sqrt{2}$-1D.$\frac{\sqrt{13}}{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列叙述正确的有①④(将你认为所有可能出现的情况的代号填入横线上).
①集合{0,1,2}的非空真子集有6个;
②集合A={1,2,3,4,5,6},集合B={y|y≤5,y∈N*},若f:x→y=|x-1|,则对应关系f是从集合A到集合B的映射;
③函数y=tanx的对称中心为(kπ,0)(k∈Z);
④函数f(x)对任意实数x都有f(x)=-$\frac{1}{f(x-2)}$恒成立,则函数f(x)是周期为4的周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知奇函数f(x)满足f(x+2)=f(x),当x∈[0,1]时.,f(x)=x,则当x∈[k,k+1](k∈Z)时,函数f(x)的解析式是f(x)=$\left\{\begin{array}{l}{x-k,k是偶数}\\{x-k-1,k是奇数}\end{array}\right.$.

查看答案和解析>>

同步练习册答案