【题目】已知函数f(x),若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是( )
A.[3,+∞)B.(3,+∞)C.(﹣∞,3)D.(﹣∞,3]
【答案】C
【解析】
当1,即a<2时,由二次函数的图象和性质,可知存在x1,x2∈(﹣∞,1]且x1≠x2,使得f(x1)=f(x2)成立;当1,即a≥2时,若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,则﹣1+a>3a﹣7,由此能求出实数a的取值范围.
函数f(x),
存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,
当1,即a<2时,由二次函数的图象和性质,可知:
存在x1,x2∈(﹣∞,1]且x1≠x2,使得f(x1)=f(x2)成立,
当1,即a≥2时,
若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,
则﹣1+a>3a﹣7,
解得a<3,
∴2≤a<3,
综上所述:实数a的取值范围是(﹣∞,3).
故选:C.
科目:高中数学 来源: 题型:
【题目】某公园草坪上有一扇形小径(如图),扇形半径为,中心角为,甲由扇形中心出发沿以每秒2米的速度向快走,同时乙从出发,沿扇形弧以每秒米的速度向慢跑,记秒时甲、乙两人所在位置分别为,,通过计算,判断下列说法是否正确:
(1)当时,函数取最小值;
(2)函数在区间上是增函数;
(3)若最小,则;
(4)在上至少有两个零点;
其中正确的判断序号是______(把你认为正确的判断序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设、是椭圆的左、右顶点,为椭圆上异于、的一点.
(1)是椭圆的上顶点,且直线与直线垂直,求点到轴的距离;
(2)过点的直线(不过坐标原点)与椭圆交于、两点,且点在轴上方,点在轴下方,若,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点O,左右焦点分别为,的椭圆的离心率为,焦距为,A,B是椭圆上两点.
(1)若直线与以原点为圆心的圆相切,且,求此圆的方程;
(2)动点P满足:,直线与的斜率的乘积为,求动点P的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某医院为筛查某种疾病,需要检验血液是否为阳性,现有份血液样本,有以下两种检验方式:①逐份检验,列需要检验次;②混合检验,将其(且)份血液样本分别取样混合在一起检验.若检验结果为阴性,这份的血液全为阴性,因而这份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这份血液究竟哪几份为阳性,就要对这份再逐份检验,此时这份血液的检验次数总共为次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为.
(1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验的方式,求恰好经过3次检验就能把阳性样本全部检验出来的概率.
(2)现取其中(且)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.
(i)运用概率统计的知识,若,试求关于的函数关系式;
(ii)若,且采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求的最大值.
参考数据:,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥S﹣ABCD中,侧面SCD为钝角三角形且垂直于底面ABCD,,点M是SA的中点,,,.
(1)求证:平面SCD;
(2)若直线SD与底面ABCD所成的角为,求平面MBD与平面SBC所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解全市统考情况,从所有参加考试的考生中抽取4000名考生的成绩,频率分布直方图如下图所示.
(1)求这4000名考生的半均成绩(同一组中数据用该组区间中点作代表);
(2)由直方图可认为考生考试成绩z服从正态分布,其中分别取考生的平均成绩和考生成绩的方差,那么抽取的4000名考生成绩超过84.81分(含84.81分)的人数估计有多少人?
(3)如果用抽取的考生成绩的情况来估计全市考生的成绩情况,现从全市考生中随机抽取4名考生,记成绩不超过84.81分的考生人数为,求.(精确到0.001)
附:①;
②,则;
③.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古典乐器一般按“八音”分类.“八音”是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于《周礼·春官·大师》,分为“金、石、土、革、丝、木、匏(páo)、竹”八音.其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器,现从打击乐器、弹拨乐器中任取不同的‘两音’,含有弹拨乐器的概率为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com