精英家教网 > 高中数学 > 题目详情
(2011•成都一模)第十一届西博会于2010年10月22日至26日在蓉举行,本届西博会以“绿色改变生活,技术引领发展”为主题.如此重要的国际盛会,自然少不了志愿者这支重要力量,“志愿者,西博会最亮丽的风景线”,通过他们的努力和付出,已把志愿者服务精神的种子播撒到人们心中.某大学对参加了本次西博会的该校志愿者实施“社会教育实践”学分考核,因该批志愿者表现良好,该大学决定考核只有合格和优秀两个等次,若某志愿者考核为合格,授予0.5个学分;考核为优秀,授予1个学分.假设该校志愿者甲、乙、丙考核为优秀的概率分别为
4
5
2
3
2
3
,他们考核所得的等次相互独立.
(I)求在这次考核中,志愿者甲、乙、两三人中至少有一名考核为优秀的概率;
(II)求在这次考核中甲、乙、丙三名志愿者所得学分之和为整数的概率.
分析:(I)根据题意,将“甲考核为优秀”,“乙考核为优秀”,“丙考核为优秀”,“志愿者甲、乙、两三人中至少有一名考核为优秀”记为A,B,C,E,根据相互独立事件与对立事件的定义,可得事件A,B,C相互独立,
.
A
.
B
.
C
与事件E是对立事件,根据相互独立事件乘法公式及对立事件概率减法公式,可得在这次考核中,志愿者甲、乙、两三人中至少有一名考核为优秀的概率;
(Ⅱ)记“在这次考核中甲、乙、丙三名志愿者所得学分之和为整数”为事件F,即三名志愿者考核为优秀的人数为1人或3人,则可得P(F)=P(A•
.
B
.
C
)+P(
.
A
•B•
.
C
)+P(
.
A
.
B
•C)+P(A•B•C),由互斥事件的概率公式,计算可得答案.
解答:解:(I)记“甲考核为优秀”为事件A,“乙考核为优秀”为事件B,
“丙考核为优秀”为事件C,“志愿者甲、乙、两三人中至少有一名考核为优秀”为事件E,
则事件A,B,C相互独立,
.
A
.
B
.
C
与事件E是对立事件;
则P(E)=1-P(
.
A
.
B
.
C
)=1-P(
.
A
)•P(
.
B
)•P(
.
C
)=1-
1
5
×
1
3
×
1
3
=
44
45

(Ⅱ)记“在这次考核中甲、乙、丙三名志愿者所得学分之和为整数”为事件F,即三名志愿者考核为优秀的人数为1人或3人,
P(F)=P(A•
.
B
.
C
)+P(
.
A
•B•
.
C
)+P(
.
A
.
B
•C)+P(A•B•C)=
24
45
=
8
15
点评:本题考查相互独立事件的概率计算,注意解答之前,认真分析题意,明确事件之间的相互关系,选择对应的概率公式进行计算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•成都一模)已知函数f(x)=x3+(4-a)x2-15x+a,a∈R.
(I)若点P(0,-2)在函数f(x)的图象上,求a的值和函数f(x)的极小值;
(II)若函数f(x)在(-1,1)上是单调递减函数,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•成都一模)已知函数f(x)=x2-ax+2(x∈[a,a+1]),若函数f(x)的最小值恒不大于a,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•成都一模)已知函数f(x)由下表定义:
x -2 2 1 3 4
f(x) 0 1 3 4 5
记f(x)的反函数为f-1(x),则f-1(4)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•成都一模)“m<-2”是“关于x的一元二次方程x2+mx+1=0有实数解”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•成都一模)设a是从集合{1,2,3,4}中随机取出的一个数,b是从集合{1,2,3}中随机取出的一个数,构成一个基本事件(a,b).记“这些基本事件中,满足a≥b>1”为事件E,则E发生的概率是(  )

查看答案和解析>>

同步练习册答案