精英家教网 > 高中数学 > 题目详情
17.适合条件{1}⊆A?{1,2,3,4,5}的集合A的个数是(  )
A.15B.16C.31D.32

分析 适合条件{1}⊆A?{1,2,3,4,5}的集合A的个数可化为集合{2,3,4,5}的真子集的个数,从而解得.

解答 解:适合条件{1}⊆A?{1,2,3,4,5}的集合A的个数可化为
集合{2,3,4,5}的真子集的个数,
集合{2,3,4,5}的真子集的个数为24-1=15,
故选:A.

点评 本题考查了有限集合的子集的个数的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若数列{an}的第四项是15,(an+1-an-3)(an+1-4an)=0(n∈N*),则满足条件的a1所有可能值之积为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.集合A的元素是由x=a+b$\sqrt{2}$(a∈Z,b∈Z)组成,判断下列元素x与集合A之间的关系:
0,$\frac{1}{\sqrt{2}-1}$,$\frac{1}{\sqrt{3}-\sqrt{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知命题p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立,q:函数f(x)=(3-2a)x是增函数,若p或q为真,p且q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设集合A={x∈R|x=a+b$\sqrt{2}$,a∈Z,b∈Z},判断下列元素x与A的关系.
(1)x=0.
(2)x=$\frac{1}{\sqrt{2}-1}$;
(3)x=$\frac{1}{\sqrt{3}+\sqrt{2}}$;
(4)x=x1+x2(其中x1∈A,x2∈A)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知∅?{x|x2+x+a=0},则实数a的取值范围是(-∞,$\frac{1}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是$\frac{2}{5}$;从袋中任意摸出2个球,至少得到1个白球的概率是$\frac{7}{9}$.
(Ⅰ)若袋中共有10个球,
(i)求白球的个数;
(ii)从袋中任意摸出3个球,求得到白球的个数为2个白球的概率;
(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于$\frac{7}{10}$.并指出袋中哪种颜色的球个数最少.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合A={x|x+m<0},B={x|x≤-3或x>0},且A?B,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设3a=3,3b=12,3c=48,则数列a,b,c(  )
A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列
C.既是等差数列,又是等比数列D.既是等差数列,又不是等比数列

查看答案和解析>>

同步练习册答案