【题目】2019年高考前夕某地天空出现了一朵点赞云,为了将这朵祥云送给马上升高三的各位学子,现以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线 的极坐标方程为,在直角坐标系中,曲线的参数方程为(为参数),曲线的参数方程为(为参数).
(1)求曲线的直角坐标方程:
(2)点为曲线上任意一点,点为曲线上任意一点,求的最小值。
科目:高中数学 来源: 题型:
【题目】设函数.
(1)若对定义域内的任意,都有成立,求实数的值;
(2)若函数的定义域上是单调函数,求实数的取值范围;
(3)若,证明对任意的正整数, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:在函数的图象上,以为切点的切线的倾斜角为.
(Ⅰ)求,的值;
(Ⅱ)是否存在最小的正整数,使得不等式对于恒成立?如果存在,请求出最小的正整数;如果不存在,请说明理由;
(Ⅲ)求证:(,).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若存在区间,使得,则称函数为“可等域函数”,区间A为函数的一个“可等域区间”.给出下列四个函数:①;②;③;④.其中存在唯一“可等域区间”的“可等域函数”的个数是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的各项为正数,且,数列满足:对任意恒成立,且常数.
(1)若为等差数列,求证:也为等差数列;
(2)若,为等比数列,求的值(用c表示);
(3)若且,令,求证.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面,四边形是菱形,,,是上任意一点。
(1)求证:;
(2)当面积的最小值是9时,在线段上是否存在点,使与平面所成角的正切值为2?若存在?求出的值,若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某村电费收取有以下两种方案供农户选择:方案一:每户每月收管理费2元,月用电不超过30度时,每度0.5元;超过30度时,超过部分按每度0.6元收取. 方案二:不收管理费,每度0.58元.
(1)求方案一收费元与用电量x (度)之间的函数关系;
(2)老王家九月份按方案一交费35元,问老王家该月用电多少度?
(3)老王家月用电最在什么范围时,选择方案一比选择方案二更好?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com