精英家教网 > 高中数学 > 题目详情

【题目】目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如下图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为短潜伏者,潜伏期高于平均数的患者,称为长潜伏者”.

1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;

2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下列联表,请将列联表补充完整,并根据列联表判断是否有97.5%的把握认为潜伏期长短与患者年龄有关;

短潜伏者

长潜伏者

合计

60岁及以上

90

60岁以下

140

合计

300

3)研究发现,某药物对新冠病毒有一定的抑制作用,需要在抽取的300人中分层选取760岁以下的患者做Ⅰ期临床试验,再从选取的7人中随机抽取两人做Ⅱ期临床试验,求两人中恰有1人为“长潜伏者”的概率.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1)平均数为,“长潜伏者”的人数为

2)列联表见解析,97.5%的把握认为潜伏期长短与年龄有关

3

【解析】

1)根据频率分布直方图中的数据计算即可

2)首先将列联表补充完整,然后计算出的观测值即可

3)由分层抽样知7人中,“短潜伏者”有3人,记为,“长潜伏者”有4人,记为DEFG 然后列举出所有的情况,然后数出满足所求事件的基本事件的个数即可.

1)平均数.

“长潜伏者”即潜伏期时间不低于6天的频率为0.5

所以500人中“长潜伏者”的人数为

2)由题意补充后的列联表如图:

短潜伏者

长潜伏者

合计

60岁及以上

90

70

160

60岁以下

60

80

140

合计

150

150

300

所以的观测值为

经查表,得,所以有97.5%的把握认为潜伏期长短与年龄有关.

3)由分层抽样知7人中,“短潜伏者”有3人,记为,“长潜伏者”有4人,记为DEFG

从中抽取2人,共有

共有21种不同的结果,两人中恰好有1人为“长潜伏者”包含了12种结果.

所以所求概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】动圆过定点,且在轴上截得的弦的长为4.

1)若动圆圆心的轨迹为曲线,求曲线的方程;

2)在曲线的对称轴上是否存在点,使过点的直线与曲线的交点满足为定值?若存在,求出点的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网购人数的日益增多,网上的支付方式也呈现一种多样化的状态,越来越多的便捷移动支付方式受到了人们的青睐,更被网友们评为“新四大发明”之一.随着人们消费观念的进步,许多人喜欢用信用卡购物,考虑到这一点,一种“网上的信用卡”横空出世——蚂蚁花呗.这是一款支付宝和蚂蚁金融合作开发的新支付方式,简单便捷,同时也满足了部分网上消费群体在支付宝余额不足时的“赊购”消费需求.为了调查使用蚂蚁花呗“赊购”消费与消费者年龄段的关系,某网站对其注册用户开展抽样调查,在每个年龄段的注册用户中各随机抽取100人,得到各年龄段使用蚂蚁花呗“赊购”的人数百分比如图所示.

1)由大数据可知,在1844岁之间使用花呗“赊购”的人数百分比y与年龄x成线性相关关系,利用统计图表中的数据,以各年龄段的区间中点代表该年龄段的年龄,求所调查群体各年龄段“赊购”人数百分比y与年龄x的线性回归方程(回归直线方程的斜率和截距保留两位有效数字);

2)该网站年龄为20岁的注册用户共有2000人,试估算该网站20岁的注册用户中使用花呗“赊购”的人数;

3)已知该网店中年龄段在18-26岁和27-35岁的注册用户人数相同,现从1835岁之间使用花呗“赊购”的人群中按分层抽样的方法随机抽取8人,再从这8人中简单随机抽取2人调查他们每个月使用花呗消费的额度,求抽取的两人年龄都在1826岁的概率.

参考答案:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是自然对数的底数,函数的定义域都是.

(1)求函数在点处的切线方程;

(2)判断函数零点个数;

(3)用表示的最小值,设,若函数上为增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是离心率的椭圆的左右项点,P是椭圆E的上顶点,且.

1)求椭圆E的方程;

2)若动直线过点,且与椭圆E交于AB两点,点M与点B关于y轴对称,求证:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,底面为线段的中点,为线段上的动点.

1)求证:平面平面

2)试确定点的位置,使平面与平面所成的锐二面角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】丑橘是人们日常生活中常见的营养型水果.某地水果批发市场销售来自5个不同产地的丑橘,各产地的包装规格相同,它们的批发价格(元/箱)和市场份额如下:

产地

批发价格

150

160

140

155

170

市场份额

市场份额亦称“市场占有率”.指某一产品的销售量在市场同类产品中所占比重.

1)从该地批发市场销售的丑橘中随机抽取一箱,估计该箱丑橘价格低于160元的概率;

2)按市场份额进行分层抽样,随机抽取20箱丑橘进行检验,①从产地共抽取箱,求的值;②从这箱中随机抽取三箱进行等级检验,随机变量表示来自产地的箱数,求的分布列和数学期望.

3)产地的丑橘明年将进入该地市场,定价160/箱,并占有一定市场份额,原有五个产地的丑橘价格不变,所占市场份额之比不变(不考虑其他因素).设今年丑橘的平均批发价为每箱元,明年丑橘的平均批发价为每箱元,比较的大小.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正四棱锥中,已知异面直线所成的角为,给出下面三个命题:

:若,则此四棱锥的侧面积为

:若分别为的中点,则平面

:若都在球的表面上,则球的表面积是四边形面积的倍.

在下列命题中,为真命题的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《孙子算经》是中国古代重要的数学著作.其中的一道题“今有木,方三尺,高三尺,欲方五寸作枕一枚.问:得几何?”意思是:“有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作多少个?”现有这样的一个正方体木料,其外周已涂上油漆,则从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案