【题目】目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如下图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏者”,潜伏期高于平均数的患者,称为“长潜伏者”.
(1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;
(2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下列联表,请将列联表补充完整,并根据列联表判断是否有97.5%的把握认为潜伏期长短与患者年龄有关;
短潜伏者 | 长潜伏者 | 合计 | |
60岁及以上 | 90 | ||
60岁以下 | 140 | ||
合计 | 300 |
(3)研究发现,某药物对新冠病毒有一定的抑制作用,需要在抽取的300人中分层选取7位60岁以下的患者做Ⅰ期临床试验,再从选取的7人中随机抽取两人做Ⅱ期临床试验,求两人中恰有1人为“长潜伏者”的概率.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)平均数为,“长潜伏者”的人数为人
(2)列联表见解析,有97.5%的把握认为潜伏期长短与年龄有关
(3)
【解析】
(1)根据频率分布直方图中的数据计算即可
(2)首先将列联表补充完整,然后计算出的观测值即可
(3)由分层抽样知7人中,“短潜伏者”有3人,记为,“长潜伏者”有4人,记为D,E,F,G, 然后列举出所有的情况,然后数出满足所求事件的基本事件的个数即可.
(1)平均数.
“长潜伏者”即潜伏期时间不低于6天的频率为0.5
所以500人中“长潜伏者”的人数为人
(2)由题意补充后的列联表如图:
短潜伏者 | 长潜伏者 | 合计 | |
60岁及以上 | 90 | 70 | 160 |
60岁以下 | 60 | 80 | 140 |
合计 | 150 | 150 | 300 |
所以的观测值为,
经查表,得,所以有97.5%的把握认为潜伏期长短与年龄有关.
(3)由分层抽样知7人中,“短潜伏者”有3人,记为,“长潜伏者”有4人,记为D,E,F,G,
从中抽取2人,共有,,,,,,,
,,,,,,,,,
,,,,,
共有21种不同的结果,两人中恰好有1人为“长潜伏者”包含了12种结果.
所以所求概率.
科目:高中数学 来源: 题型:
【题目】动圆过定点,且在轴上截得的弦的长为4.
(1)若动圆圆心的轨迹为曲线,求曲线的方程;
(2)在曲线的对称轴上是否存在点,使过点的直线与曲线的交点满足为定值?若存在,求出点的坐标及定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着网购人数的日益增多,网上的支付方式也呈现一种多样化的状态,越来越多的便捷移动支付方式受到了人们的青睐,更被网友们评为“新四大发明”之一.随着人们消费观念的进步,许多人喜欢用信用卡购物,考虑到这一点,一种“网上的信用卡”横空出世——蚂蚁花呗.这是一款支付宝和蚂蚁金融合作开发的新支付方式,简单便捷,同时也满足了部分网上消费群体在支付宝余额不足时的“赊购”消费需求.为了调查使用蚂蚁花呗“赊购”消费与消费者年龄段的关系,某网站对其注册用户开展抽样调查,在每个年龄段的注册用户中各随机抽取100人,得到各年龄段使用蚂蚁花呗“赊购”的人数百分比如图所示.
(1)由大数据可知,在18到44岁之间使用花呗“赊购”的人数百分比y与年龄x成线性相关关系,利用统计图表中的数据,以各年龄段的区间中点代表该年龄段的年龄,求所调查群体各年龄段“赊购”人数百分比y与年龄x的线性回归方程(回归直线方程的斜率和截距保留两位有效数字);
(2)该网站年龄为20岁的注册用户共有2000人,试估算该网站20岁的注册用户中使用花呗“赊购”的人数;
(3)已知该网店中年龄段在18-26岁和27-35岁的注册用户人数相同,现从18到35岁之间使用花呗“赊购”的人群中按分层抽样的方法随机抽取8人,再从这8人中简单随机抽取2人调查他们每个月使用花呗消费的额度,求抽取的两人年龄都在18到26岁的概率.
参考答案:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是自然对数的底数,函数与的定义域都是.
(1)求函数在点处的切线方程;
(2)判断函数零点个数;
(3)用表示的最小值,设,,若函数在上为增函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知、分别是离心率的椭圆的左右项点,P是椭圆E的上顶点,且.
(1)求椭圆E的方程;
(2)若动直线过点,且与椭圆E交于A、B两点,点M与点B关于y轴对称,求证:直线恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为正方形,底面,,为线段的中点,为线段上的动点.
(1)求证:平面平面.
(2)试确定点的位置,使平面与平面所成的锐二面角为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】丑橘是人们日常生活中常见的营养型水果.某地水果批发市场销售来自5个不同产地的丑橘,各产地的包装规格相同,它们的批发价格(元/箱)和市场份额如下:
产地 | |||||
批发价格 | 150 | 160 | 140 | 155 | 170 |
市场份额 |
市场份额亦称“市场占有率”.指某一产品的销售量在市场同类产品中所占比重.
(1)从该地批发市场销售的丑橘中随机抽取一箱,估计该箱丑橘价格低于160元的概率;
(2)按市场份额进行分层抽样,随机抽取20箱丑橘进行检验,①从产地,共抽取箱,求的值;②从这箱中随机抽取三箱进行等级检验,随机变量表示来自产地的箱数,求的分布列和数学期望.
(3)产地的丑橘明年将进入该地市场,定价160元/箱,并占有一定市场份额,原有五个产地的丑橘价格不变,所占市场份额之比不变(不考虑其他因素).设今年丑橘的平均批发价为每箱元,明年丑橘的平均批发价为每箱元,比较,的大小.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正四棱锥中,已知异面直线与所成的角为,给出下面三个命题:
:若,则此四棱锥的侧面积为;
:若分别为的中点,则平面;
:若都在球的表面上,则球的表面积是四边形面积的倍.
在下列命题中,为真命题的是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《孙子算经》是中国古代重要的数学著作.其中的一道题“今有木,方三尺,高三尺,欲方五寸作枕一枚.问:得几何?”意思是:“有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作多少个?”现有这样的一个正方体木料,其外周已涂上油漆,则从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com