精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的前n项和为Sn , 且满足a1=1,nSn+1﹣(n+1)Sn= ,n∈N*
(1)求a2的值;
(2)求数列{an}的通项公式.

【答案】
(1)解:由a1=1,nSn+1﹣(n+1)Sn= ,n∈N*,令n=1,则S2﹣2S1=1,

∴a2+1﹣2=1,解得a2=2


(2)解:由nSn+1﹣(n+1)Sn= ,n∈N*,变形为: =

∴数列 是等差数列,首项为1,公差为

=1+ =

∴Sn=

∴当n≥2时,Sn1=

an=Sn﹣Sn1= =n,

∴an=n.


【解析】(1)由a1=1,nSn+1﹣(n+1)Sn= ,n∈N*,令n=1,解出即可.(2)由nSn+1﹣(n+1)Sn= ,n∈N*,变形为: = ,利用等差数列的通项公式可得 ,再利用Sn与an的关系即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣3x2﹣9x+1(x∈R).
(1)求函数f(x)的单调区间.
(2)若f(x)﹣2a+1≥0对x∈[﹣2,4]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市出租车的现行计价标准是:路程在2 km以内(含2 km)按起步价8元收取,超过2 km后的路程按1.9 元/km收取,但超过10 km后的路程需加收50%的返空费(即单价为1.9×(1+50%)=2.85(元/km))

(1)将某乘客搭乘一次出租车的费用f(x)(单位:元)表示为行程x(0<x≤60,单位:km)的分段函数;

(2)某乘客的行程为16 km,他准备先乘一辆出租车行驶8 km后,再换乘另一辆出租车完成余下行程,请问:他这样做是否比只乘一辆出租车完成全部行程更省钱?

(现实中要计等待时间且最终付费取整数,本题在计算时都不予考虑)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】濮阳市黄河滩区某村2010年至2016年人均纯收入(单位:万元)的数据如下表:

年份

2010

2011

2012

2013

2014

2015

2016

年份代号x

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(Ⅰ)求y关于x的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2010年至2016年该村人均纯收入的变化情况,并预测该村2017年人均纯收入.
附:回归直线的斜率和截距的最小乘法估计公式分别为: = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)判断函数的奇偶性;

(2)判断并证明))上的单调性;

(3)若对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC所对的边分别为abc,且

1)判断△ABC的形状,并加以证明;

2)当c = 1时,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=60°PA=AC=aPB=PD= ,点EPD的中点.

(Ⅰ)求证:PA⊥平面ABCD

(Ⅱ)求二面角E—AC—D的大小;

(Ⅲ)求点P到平面EAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,当时, ,且对任意正实数,满足.

(1)求

(2)证明在定义域上是减函数;

(3)如果,求满足不等式的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中, a、b、c分别为角A、B、C的对边,且

(1)若,试判断△ABC的形状;

(2)若a=,b+c=3,求b和c的值.

查看答案和解析>>

同步练习册答案