精英家教网 > 高中数学 > 题目详情
17.如图,在空间四边形ABCD中,DA⊥平面ABC,∠ABC=90°,AE⊥CD,AF⊥DB.
求证:(1)平面DBC⊥平面DAB;
(2)平面ADC⊥平面AEF.

分析 根据要证明平面与平面垂直,只需要证线面垂直,要证线面垂直,需要证明线垂直面内的两条相交直线.

解答 证明:(1)∵DA⊥平面ABC,BC?平面ABC
∴DA⊥BC,
又BC⊥AB,AB∩AD=A
∴BC⊥平面ABD,
∵BC?平面DBC,
∴平面DBC⊥平面DAB;
(2)∵BC⊥平面ABD,
又AF?平面ABD,
∴BC⊥AF,
∵AF⊥DB,BC∩BD=B,
∴AF⊥平面BCD,
∵CD?平面BCD,
∴AF⊥CD,
∵AE⊥CD,AF∩AE=A
∴CD⊥平面AEF,
∵CD?平面ADC,
∴平面ADC⊥平面AEF.

点评 本题主要考查面面垂直和线面垂直的判定,关键是它们之间的转化,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.当x∈$[\frac{π}{6},\frac{7π}{6}]$时,求函数y=3-sinx-2cos2x的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知:如图,四边形ABCD是圆O的内接四边形,对角线AC、BD交于点E,直线AP是圆O的切线,切点为A,∠PAB=∠BAC.
(1)求证:AB2=BD•BE;
(2)若∠FED=∠CED,求证:点A、B、E、F四点共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在(1-2x)m的展开式中,第5项、第6项和第7项的二项式系数为等差数列,求展开式中的第2项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A、B、C对应的边分别是a、b、c,C=$\frac{3π}{4}$,且sinB=2sinA•cos(A+B).
(1)证明:b2=2a2
(2)若△ABC的面积是1,求边c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆$\frac{{x}^{2}}{4}$+y2=1的左右焦点分别为F1,F2,P为椭圆上任意一点.
求(1)PF1,•PF2的最大值(最小值).
(2)${PF}_{1}^{2}{+PF}_{2}^{2}$的最小值.
(3)∠F1PF2的最大值.
(4)PF1的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知Rt△ABC的斜边AB的长为4,设|$\overrightarrow{PC}$|=1,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围是[-3,5].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知正项等差数列{an}满足a2+a4+a6=9,则log3(a1+$\frac{1}{2}{a}_{3}$+$\frac{1}{2}{a}_{5}$+a7)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.编写一个程序,求使不等式1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$>10成立的最小自然数n的值.

查看答案和解析>>

同步练习册答案