精英家教网 > 高中数学 > 题目详情
12.函数f(x)=2x-2+ex-1的零点所在区间为(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

分析 由函数的解析式求得f(0)f(1)<0,再根据根据函数零点的判定定理可得函数f(x)的零点所在的区间.

解答 解:∵f(x)=2x-2+ex-1
∴f(0)=-2+$\frac{1}{e}$<0,f(1)=2-2+1>0,
∴f(0)f(1)<0.
根据函数零点的判定定理可得函数f(x)的零点所在的区间是(0,1),
故选:B.

点评 本题主要考查求函数的值,函数零点的判定定理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知A1A2、B1B2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的长轴和短轴,若△A1B1B2是等边三角形,则该椭圆的离心率e=$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.二次函数y=ax2+2ax+1(a<0)在区间[-1,4]上的最大值为4,则a的值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.把112°30′化成弧度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数的导数:
(1)y=$\frac{3{x}^{2}-x\sqrt{x}+5\sqrt{x}-9}{\sqrt{x}}$;
(2)f(x)=(x-1)(x+1)(x2+1)(x4+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn,点($\sqrt{{a}_{n}}$,Sn)在曲线y=2x2-2上.
(1)求证:数列{an}是等比数列;
(2)设数列{bn}满足bn=$\frac{{a}_{n}}{({a}_{n}+1)({a}_{n+1}+1)}$,求数列的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.等差数列{an}的前n项和为Sn,若S11=22,则a3+a7+a8=(  )
A.18B.12C.9D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.记数列{an}的前n项和为Sn,若Sn+(1+$\frac{2}{n}$)an=4,则an=$\frac{n}{{2}^{n-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,一根木棒AB长为2米,斜靠在墙壁AC上,∠ABC=60°,若AB滑动至A1B1位置,且$A{A_1}=(\sqrt{3}-\sqrt{2})$米,则①BB1=$\sqrt{2}$-1米;②木棒AB的中点D所经过的路程为$\frac{π}{12}$米.

查看答案和解析>>

同步练习册答案