【题目】已知函数.
(1)求函数的定义域;
(2)判断函数的奇偶性,并证明你的结论;
(3)在函数图像上是否存在两个不同的点,使直线垂直轴,若存在,求出两点坐标;若不存在,说明理由.
【答案】(1) 函数的定义域为;(2)见解析;(3)见解析.
【解析】试题分析:(1)根据函数的解析式有意义的原则,结合对数的真数部分必须大于0,构造关于x的不等式组,解不等式组,即可得到答案;
(2)根据函数奇偶性的定义,利用对数的运算性质,判断f(﹣x)与f(x)的关系,即可得到函数f(x)的奇偶性;
(3) 假设函数图象上存在两点A(,),, 使直线垂直轴,则,
经推理不成立,故不存在.
试题解析:
(1) 由 ,
∴ 函数的定义域为
(2) ∵f (-x)= + lg=– lg=-f (x),
∴ f (x)是奇函数
(3)假设函数图象上存在两点A(,),,
使直线AB恰好与y轴垂直,其中.
即当时, , 不妨设,
于是
由
又
, ∴ , 与=矛盾.
故函数图象上不存在两个不同的点A、B,使直线AB垂直y轴.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx﹣x2+1. (Ⅰ)若曲线y=f(x)在x=1处的切线方程为4x﹣y+b=0,求实数a和b的值;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)若a<0,且对任意x1 , x2∈(0,+∞),x1≠x2 , 都有|f(x1)﹣f(x2)|>|x1﹣x2|,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cos(+x)cos(-x),g(x)=sin 2x-.
(1)求函数f(x)的最小正周期;
(2)求函数h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的图象如图所示,为了得到函数的图象,可以把函数的图象( )
A. 每个点的横坐标缩短到原来的(纵坐标不变),再向左平移个单位
B. 每个点的横坐标缩短到原来的2倍(纵坐标不变),再向左平移个单位
C. 先向左平移个单位,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变)
D. 先向左平移个单位,再把所得各点的横坐标伸长到原来的(纵坐标不变)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE= CD=2,M是线段AE上的动点.
(Ⅰ)试确定点M的位置,使AC∥平面MDF,并说明理由;
(Ⅱ)在(Ⅰ)的条件下,求平面MDF将几何体ADE﹣BCF分成的两部分的体积之比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知线段的端点,端点在圆上运动
(Ⅰ)求线段的中点的轨迹方程.
(Ⅱ) 设动直线与圆交于两点,问在轴正半轴上是否存在定点,使得直线与直线关于轴对称?若存在,请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com