精英家教网 > 高中数学 > 题目详情
已知定义域为[0,1]的函数f(x)同时满足以下三个条件:
(1)对任意的x∈[0,1],总有f(x)>0;
(2)f(1)=1;
(3)若x1≥0,x2≥0,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)成立,则称f(x)为“友谊函数”,请解答下列各题:
①若已知f(x)为“友谊函数”,求f(0)的值并判断函数的单调性;
②函数g(x)=2x-1在区间[0,1]上是否为“友谊函数”?并给出理由.
分析:①赋值可考虑取x1=x2=0,代入f(x1+x2)≥f(x1)+f(x2),可得f(0)≥f(0)+f(0),由已知f(0)≥0,可得f(0)=0,由0≤x1<x2≤1,则0<x2-x1<1,故有f(x2)=f(x2-x1+x1)≥f(x2-x1)+f(x1)≥f(x1),即得结论成立;
②要判断函数g(x)=2x-1在区间[0,1]上是否为“友谊函数,只要检验函数g(x)=2x-1在[0,1]上是否满足(1)g(x)>0;(2)g(1)=1;(3)x1≥0,x2≥0,且x1+x2≤1,有g(x1+x2)≥g(x1)+g(x2)即可.
解答:解:①取x1=x2=0,代入f(x1+x2)≥f(x1)+f(x2),
得f(0)≥f(0)+f(0),化简可得f(0)≤0
又由f(0)≥0,得f(0)=0
设0≤x1<x2≤1,则0<x2-x1<1,
所以f(x2)=f(x2-x1+x1)≥f(x2-x1)+f(x1)≥f(x1
故有f(x1)≤f(x2),故函数f(x)为定义在[0,1]上的增函数;
②显然g(x)=2x-1在[0,1]上满足(1)g(x)>0;(2)g(1)=1;(3)若x1≥0,x2≥0,且x1+x2≤1,则有
g(x1+x2)-[g(x1)+g(x2)]=2x1+x2-1-[(2x1-1)+(2x2-1)]=(2x2-1)(2x1-1)≥0
故g(x)=2x-1满足条件(1)、(2)、(3),
所以g(x)=2x-1为友谊函数.
点评:采用赋值法是解决抽象函数的性质应用的常用方法,而函数的新定义往往转化为一般函数性质的研究,本题结合指数函数的性质研究函数的函数的函数值域的应用,指数函数的单调性的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域为[0,1]的函数f(x)同时满足:
①对于任意的x∈[0,1],总有f(x)≥0;
②f(1)=1;
③若x1≥0,x2≥0,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2).
(1)求f(0)的值;
(2)求f(x)的最大值;
(3)若对于任意x∈[0,1],总有4f2(x)-4(2-a)f(x)+5-4a≥0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为[0,1]的函数f(x)同时满足以下三个条件:
①对任意的x∈[0,1],总有f(x)≥0; 
②f(1)=1;
③若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)成立,并且称f(x)为“友谊函数”,
请解答下列各题:
(1)若已知f(x)为“友谊函数”,求f(0)的值;
(2)函数g(x)=2x-1在区间[0,1]上是否为“友谊函数”?并给出理由.
(3)已知f(x)为“友谊函数”,且 0≤x1<x2≤1,求证:f(x1)≤f(x2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为[0,1]的函数f(x)同时满足:
①对于任意的x∈[0,1],总有f(x)≥0;
②f(1)=1;
③若0≤x1≤1,0≤x2≤1,x1+x2≤1,则有f (x1+x2)≥f (x1)+f (x2).
(1)试求f(0)的值;
(2)试求函数f(x)的最大值;
(3)试证明:当x∈(
1
2n
1
2n-1
]
,n∈N+时,f(x)<2x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为[0,1]的函数同时满足以下三个条件:①对任意x∈[0,1],总有f(x)≥0;②f(1)=1;③若x1≥0,x2≥0,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)成立.
(1)求f(0)的值;
(2)函数g(x)=2x-1在区间[0,1]上是否同时适合①②③?并予以证明;
(3)假定存在x0∈[0,1],使得f(x0)∈[0,1],且f(f(x0))=x0,求证:f(x0)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为[0,1]的函数f (x)同时满足:
①对于任意的x∈[0,1],总有f(x)≥0;
②f(1)=1;
③若0≤x1≤1,0≤x2≤1,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2).
(1)试求f(0)的值;
(2)试求函数f (x)的最大值;
(3)试证明:当x∈(
1
4
1
2
]
时,f(x)<2x.

查看答案和解析>>

同步练习册答案