【题目】已知圆的半径为2,为平面上一点,,是圆上动点,线段的垂直平分线和直线相交于点.
(1)以中点为原点,所在直线为轴,建立平面直角坐标系,求点的轨迹方程;
(2)设(1)中点轨迹与直线相交于两点,求三角形的面积的取值范围.
科目:高中数学 来源: 题型:
【题目】以直角坐标系xOy的原点为极坐标系的极点,x轴的正半轴为极轴.已知曲线的极坐标方程为,P是上一动点,,Q的轨迹为.
(1)求曲线的极坐标方程,并化为直角坐标方程,
(2)若点,直线l的参数方程为(t为参数),直线l与曲线的交点为A,B,当取最小值时,求直线l的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
已知函数是奇函数,的定义域为.当时, .(e为自然对数的底数).
(1)若函数在区间上存在极值点,求实数的取值范围;
(2)如果当x≥1时,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线的标准方程为,其中为坐标原点,抛物线的焦点坐标为,为抛物线上任意一点(原点除外),直线过焦点交抛物线于点,直线过点交抛物线于点,连结并延长交抛物线于点.
(1)若弦的长度为8,求的面积;
(2)求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形ABCP中,,,,D是AP的中点,E,G,F分别为PC、CB、PD的中点,将沿CD折起,使得二面角为直二面角.
(1)证明:平面EFG;
(2)求二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究“日平均走步数和性别是否有关”,统计了2019年1月份所有用户的日平均步数,规定日平均步数不少于8000的为“运动达人”,步数在8000以下的为“非运动达人”,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:
运动达人 | 非运动达人 | 总计 | |
男 | 35 | 60 | |
女 | 26 | ||
总计 | 100 |
(1)(i)将列联表补充完整;
(ii)据此列联表判断,能否有的把握认为“日平均走步数和性别是否有关”?
(2)将频率视作概率,从该公司的所有人“运动达人”中任意抽取3个用户,求抽取的用户中女用户人数的分布列及期望.
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《周髀算经》中给出了勾股定理的绝妙证明.如图是赵爽弦图及注文.弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱色及黄色,其面积称为朱实、黄实.由2×勾×股+(股-勾)2=4×朱实+黄实=弦实,化简得勾2+股2=弦2.若图中勾股形的勾股比为,向弦图内随机抛掷100颗图钉(大小忽略不计),则落在黄色图形内的图钉颗数大约为( )(参考数据:,)
A.2B.4C.6D.8
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com