【题目】三棱柱中,为的中点,点在侧棱上,平面
(1) 证明:是的中点;
(2) 设,四边形为边长为4正方形,四边形为矩形,且异面直线与所成的角为,求该三棱柱的体积.
【答案】(1)证明见解析;(2)32.
【解析】
(1)利用棱柱的性质以及相似三角形判断定理,证得,从而得到;连接分别交于,连,利用线面平行性质定理证得,从而得到;再证得,从而得到,结论得证.
(2)取的中点,连接,则或其补角为异面直线与所成的角,结合题目条件,设,分别求出,再利用余弦定理,即可建立方程求出,从而求出三棱柱的体积.
(1)证明:连接分别交于,连,
∵平面,平面,平面平面=,∴,
又∵在三棱柱侧面中,为的中点,
由可得,,所以,
故,,∴,
在平面中同理可证得,
故有是的中点.
(2)取的中点,连接,可知,
故或其补角为异面直线与所成的角,
设,则在中,可求,
则余弦定理可求:,解得:,
故.
科目:高中数学 来源: 题型:
【题目】已知椭圆的左焦点为,右焦点为,设M,N是椭圆C上位于x轴上方的两动点,且直线与直线平行,与交于点D.
(Ⅰ)求和的坐标;
(Ⅱ)求的最小值;
(Ⅲ)求证:是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题:
①若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变;
②在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;
③设随机变量服从正态分布,若,则;
④对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握越大.其中正确的命题序号是( )
A.①②B.①②③C.①③④D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】足球是世界普及率最高的运动,我国大力发展校园足球.为了解本地区足球特色学校的发展状况,社会调查小组得到如下统计数据:
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
足球特色学校y(百个) | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(1)根据上表数据,计算y与x的相关系数r,并说明y与x的线性相关性强弱.
(已知:,则认为y与x线性相关性很强;,则认为y与x线性相关性一般;,则认为y与x线性相关性较):
(2)求y关于x的线性回归方程,并预测A地区2020年足球特色学校的个数(精确到个).
参考公式和数据:,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆心为的圆,满足下列条件:圆心位于轴正半轴上,与直线相切且被轴截得的弦长为,圆的面积小于13.
(Ⅰ)求圆的标准方程;
(Ⅱ)设过点的直线与圆交于不同的两点,以为邻边作平行四边形.是否存在这样的直线,使得直线与恰好平行?如果存在,求出的方程;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取个作为样本,称出它们的重量(单位:克)重量分组区间为,,,,由此得到样本的重量频率分布直方图(如图).
(1)求的值,并根据样本数据,估计盒子中小球重量的众数与平均数(精确到0.01);
(2)从盒子中装的大量小球中,随机抽取3个小球,其中重量在内的小球个数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:从数列中抽取项按其在中的次序排列形成一个新数列,则称为的子数列;若成等差(或等比),则称为的等差(或等比)子数列.
(1)记数列的前项和为,已知.
①求数列的通项公式;
②数列是否存在等差子数列,若存在,求出等差子数列;若不存在,请说明理由.
(2)已知数列的通项公式为,证明:存在等比子数列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com